論文の概要: Next-Generation Teleophthalmology: AI-enabled Quality Assessment Aiding
Remote Smartphone-based Consultation
- arxiv url: http://arxiv.org/abs/2402.07118v1
- Date: Sun, 11 Feb 2024 07:27:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 17:33:13.257982
- Title: Next-Generation Teleophthalmology: AI-enabled Quality Assessment Aiding
Remote Smartphone-based Consultation
- Title(参考訳): 次世代眼科:リモートスマートフォンベースのコンサルティングを支援するAI対応品質評価
- Authors: Dhruv Srikanth, Jayang Gurung, N Satya Deepika, Vineet Joshi, Pravin
Vaddavalli, Soumya Jana
- Abstract要約: 本稿では,臨床医の判断を模倣した即時フィードバックによるAIによる品質評価システムを提案する。
盲目やその他の眼疾患は、特にインドのような低所得国や中所得国では、世界的な健康上の問題となっている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blindness and other eye diseases are a global health concern, particularly in
low- and middle-income countries like India. In this regard, during the
COVID-19 pandemic, teleophthalmology became a lifeline, and the Grabi
attachment for smartphone-based eye imaging gained in use. However, quality of
user-captured image often remained inadequate, requiring clinician vetting and
delays. In this backdrop, we propose an AI-based quality assessment system with
instant feedback mimicking clinicians' judgments and tested on patient-captured
images. Dividing the complex problem hierarchically, here we tackle a
nontrivial part, and demonstrate a proof of the concept.
- Abstract(参考訳): 盲目やその他の眼疾患は、特にインドのような低所得国や中所得国では、世界的な健康上の問題となっている。
この点では、新型コロナウイルス(covid-19)のパンデミックの間、眼科は生命線となり、スマートフォンベースの眼画像のためのgrabiアタッチメントが使われるようになった。
しかし、ユーザキャプチャ画像の品質は不適切であり、臨床検査と遅延が必要であった。
本稿では,臨床医の判断を模倣した即時フィードバックによるAIによる品質評価システムを提案する。
複雑な問題を階層的に分割し,非自明な部分に取り組み,概念の証明を示す。
関連論文リスト
- DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
第25回医用画像コンピューティング・コンピュータ支援介入国際会議(MICCAI 2022)にともなうDRAC糖尿病網膜症解析チャレンジの企画を行った。
この課題は、DR病変の分節化、画像品質評価、DRグレーディングの3つのタスクから構成される。
本稿では,課題の各課題について,トップパフォーマンスのソリューションと結果の要約と分析を行う。
論文 参考訳(メタデータ) (2023-04-05T12:04:55Z) - Self-supervised Domain Adaptation for Breaking the Limits of Low-quality
Fundus Image Quality Enhancement [14.677912534121273]
低画質の眼底画像とスタイルの整合性は、眼底疾患の診断における不確実性を高める可能性がある。
画像内容、低品質要因、スタイル情報の特徴を乱すために、2つの自己教師付きドメイン適応タスクを定式化する。
我々のDASQE法は,低画質の画像しか得られない場合に,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2023-01-17T15:07:20Z) - Towards the Use of Saliency Maps for Explaining Low-Quality
Electrocardiograms to End Users [45.62380752173638]
診断に医用画像を使用する場合,画像が高品質であることが重要である。
遠隔医療において一般的な問題は、患者が診療所を退院した後にのみ、品質問題が警告されることである。
本稿では,低品質な医用画像をリアルタイムにフラグ付け,説明するためのAIシステムの開発について報告する。
論文 参考訳(メタデータ) (2022-07-06T14:53:26Z) - Automatic detection of glaucoma via fundus imaging and artificial
intelligence: A review [0.4215938932388722]
緑内障は世界中で不可逆的な視覚障害の原因となっている。
ファンダスイメージングは非侵襲的で低コストである。
人工知能は、光学カップとディスクの境界を自動的に見つけることができる。
論文 参考訳(メタデータ) (2022-04-12T07:47:13Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
白内障は一般的な眼疾患であり、盲目や視力障害の主な原因の1つである。
近赤外画像を用いた白内障検出のための新しいアルゴリズムを提案する。
深層学習に基づくアイセグメンテーションとマルチタスクネットワーク分類ネットワークについて述べる。
論文 参考訳(メタデータ) (2021-10-06T08:10:28Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - TrueImage: A Machine Learning Algorithm to Improve the Quality of
Telehealth Photos [8.27648210293057]
写真の品質が特に重要であるテレダーマトロジーに焦点をあてる。
遠隔医療のために、皮膚科医は患者の病変の画像を提出して評価するよう要求する。
これらの画像はしばしば、臨床写真撮影の経験がない患者のために、臨床診断を行うには不十分な品質であることが多い。
画像評価機械学習パイプラインTrueImageを提案し, 画質の悪い皮膚画像を検出し, 患者により良い写真撮影を指導する。
論文 参考訳(メタデータ) (2020-10-01T17:47:57Z) - AGE Challenge: Angle Closure Glaucoma Evaluation in Anterior Segment
Optical Coherence Tomography [61.405005501608706]
アングル閉鎖緑内障(ACG)は開角緑内障よりも攻撃的な疾患である。
前部セグメント光コヒーレンス・トモグラフィー(AS-OCT)は、開角度から角度閉鎖を識別する高速で接触のない方法を提供する。
既存のメソッドを均一に評価するためのパブリックなAS-OCTデータセットは存在しない。
私たちは,MICCAI 2019と共同で開催したAngle closure Glaucoma Evaluation Challenge (AGE)を組織した。
論文 参考訳(メタデータ) (2020-05-05T14:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。