論文の概要: DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images
- arxiv url: http://arxiv.org/abs/2304.02389v1
- Date: Wed, 5 Apr 2023 12:04:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 12:42:32.323392
- Title: DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images
- Title(参考訳): DRAC : Ultra-Wide Optical Coherence Tomography Angiography を用いた糖尿病網膜症解析の試み
- Authors: Bo Qian, Hao Chen, Xiangning Wang, Haoxuan Che, Gitaek Kwon, Jaeyoung
Kim, Sungjin Choi, Seoyoung Shin, Felix Krause, Markus Unterdechler, Junlin
Hou, Rui Feng, Yihao Li, Mostafa El Habib Daho, Qiang Wu, Ping Zhang,
Xiaokang Yang, Yiyu Cai, Weiping Jia, Huating Li, Bin Sheng
- Abstract要約: 第25回医用画像コンピューティング・コンピュータ支援介入国際会議(MICCAI 2022)にともなうDRAC糖尿病網膜症解析チャレンジの企画を行った。
この課題は、DR病変の分節化、画像品質評価、DRグレーディングの3つのタスクから構成される。
本稿では,課題の各課題について,トップパフォーマンスのソリューションと結果の要約と分析を行う。
- 参考スコア(独自算出の注目度): 51.27125547308154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-assisted automatic analysis of diabetic retinopathy (DR) is of great
importance in reducing the risks of vision loss and even blindness. Ultra-wide
optical coherence tomography angiography (UW-OCTA) is a non-invasive and safe
imaging modality in DR diagnosis system, but there is a lack of publicly
available benchmarks for model development and evaluation. To promote further
research and scientific benchmarking for diabetic retinopathy analysis using
UW-OCTA images, we organized a challenge named "DRAC - Diabetic Retinopathy
Analysis Challenge" in conjunction with the 25th International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). The
challenge consists of three tasks: segmentation of DR lesions, image quality
assessment and DR grading. The scientific community responded positively to the
challenge, with 11, 12, and 13 teams from geographically diverse institutes
submitting different solutions in these three tasks, respectively. This paper
presents a summary and analysis of the top-performing solutions and results for
each task of the challenge. The obtained results from top algorithms indicate
the importance of data augmentation, model architecture and ensemble of
networks in improving the performance of deep learning models. These findings
have the potential to enable new developments in diabetic retinopathy analysis.
The challenge remains open for post-challenge registrations and submissions for
benchmarking future methodology developments.
- Abstract(参考訳): 糖尿病網膜症(dr)のコンピュータ支援自動解析は、視力喪失や視覚障害のリスクを減らす上で非常に重要である。
Ultra-wide optical coherence tomography angiography (UW-OCTA)は、DR診断システムにおいて、非侵襲的で安全な画像モダリティであるが、モデルの開発と評価のためのベンチマークが公開されていない。
UW-OCTA画像を用いた糖尿病網膜症解析のためのさらなる研究と科学的ベンチマークを行うため,第25回医用画像コンピューティング・コンピュータ支援介入会議(MICCAI 2022)と共同で,DRAC-糖尿病網膜症解析チャレンジ(DRAC-diabetic Retinopathy Analysis Challenge)を企画した。
課題は、DR病変の分割、画像品質評価、DRグレーディングの3つのタスクからなる。
科学的コミュニティはこの課題に肯定的な反応を示し、地理的に多様な研究所の11、12、13のチームがそれぞれ3つの課題に異なる解決策を提出した。
本稿では,課題の各課題について,トップパフォーマンスのソリューションと結果の要約と分析を行う。
上位アルゴリズムから得られた結果は,深層学習モデルの性能向上におけるデータ拡張,モデルアーキテクチャ,ネットワークのアンサンブルの重要性を示している。
これらの発見は糖尿病網膜症解析の新しい発展を可能にする可能性がある。
この課題は、今後の方法論開発をベンチマークするための登録と提出の後に解決される。
関連論文リスト
- Deep Learning-Based Detection of Referable Diabetic Retinopathy and Macular Edema Using Ultra-Widefield Fundus Imaging [0.6727410055112188]
糖尿病網膜症や糖尿病黄斑浮腫は、視力喪失につながる糖尿病の重大な合併症である。
超広視野眼底画像による早期発見は、患者の成果を高めるが、画質と分析スケールの課題を提示する。
本稿では,MICCAI 2024 UWF4DRチャレンジの枠組みの中で,自動UWF画像解析のためのディープラーニングソリューションを提案する。
論文 参考訳(メタデータ) (2024-09-19T15:51:48Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Detection and Classification of Diabetic Retinopathy using Deep Learning
Algorithms for Segmentation to Facilitate Referral Recommendation for Test
and Treatment Prediction [0.0]
本研究は糖尿病網膜症(DR)の臨床的課題について考察する。
提案手法は、畳み込みニューラルネットワーク(CNN)を用いたトランスファーラーニングを利用して、単一の基礎写真を用いた自動DR検出を行う。
Jaccard、F1、リコール、精度、精度の高評価スコアは、網膜病理評価における診断能力を高めるモデルの可能性を示している。
論文 参考訳(メタデータ) (2024-01-05T11:19:24Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
糖尿病網膜症解析チャレンジ(DRAC)2022から得られる糖尿病網膜症(DR)画像を自動的に評価するアンサンブル法を提案する。
まず、最先端の分類ネットワークを採用し、利用可能なデータセットの異なる分割でUW-OCTA画像のグレードをトレーニングする。
最終的に、25のモデルを取得し、そのうち上位16のモデルを選択し、アンサンブルして最終的な予測を生成する。
論文 参考訳(メタデータ) (2022-12-12T22:06:47Z) - Segmentation, Classification, and Quality Assessment of UW-OCTA Images
for the Diagnosis of Diabetic Retinopathy [2.435307010444828]
糖尿病網膜症(英: Diabetic Retinopathy, DR)は、糖尿病の重症合併症の一つ。
本稿では,糖尿病網膜症解析チャレンジ2022(DRAC22)の3つの課題に対する解決策を提示する。
得られた結果は有望であり、セグメンテーションタスクのTOP5に位置づけることを可能にしました。
論文 参考訳(メタデータ) (2022-11-21T14:49:18Z) - Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to
Overcome Data Scarcity [6.802798389355481]
糖尿病網膜症 (DR) 解析課題として, 病変分割, 画像品質評価, DRグレーディングについて検討した。
各タスクに対して,アンサンブル学習,データ強化,半教師付き学習を活用した堅牢な学習手法を導入する。
疑似ラベルの負の効果を低減するため,モデルの信頼度スコアに基づいて不確実な擬似ラベルを除外する信頼性の高い擬似ラベルを提案する。
論文 参考訳(メタデータ) (2022-10-18T03:25:00Z) - REFUGE2 Challenge: Treasure for Multi-Domain Learning in Glaucoma
Assessment [45.41988445653055]
REFUGE2チャレンジでは、Zeiss、Canon、Kowa、Topconを含む4つのモデルの2000枚のカラー・ファンドイメージがリリースされた。
3つのサブタスクは緑内障分類、カップ/光ディスクセグメンテーション、黄斑葉の局在などの課題のために設計された。
この記事では、ファイナリストのメソッドを要約し、その結果を分析します。
論文 参考訳(メタデータ) (2022-02-18T02:56:21Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。