論文の概要: Social Evolution of Published Text and The Emergence of Artificial Intelligence Through Large Language Models and The Problem of Toxicity and Bias
- arxiv url: http://arxiv.org/abs/2402.07166v2
- Date: Fri, 17 May 2024 07:12:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 18:31:55.339284
- Title: Social Evolution of Published Text and The Emergence of Artificial Intelligence Through Large Language Models and The Problem of Toxicity and Bias
- Title(参考訳): 出版テキストの社会進化と大規模言語モデルによる人工知能の出現と毒性とバイアスの問題
- Authors: Arifa Khan, P. Saravanan, S. K Venkatesan,
- Abstract要約: 大規模言語モデルにおけるAIの出現に繋がった,AIとディープラーニングの急速な発展の鳥眼図を提供する。
我々は、過度に楽観的な人々への警告として存在する毒性、偏見、記憶、梅毒、論理的矛盾を指摘する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We provide a birds eye view of the rapid developments in AI and Deep Learning that has led to the path-breaking emergence of AI in Large Language Models. The aim of this study is to place all these developments in a pragmatic broader historical social perspective without any exaggerations while at the same time without any pessimism that created the AI winter in the 1970s to 1990s. We also at the same time point out toxicity, bias, memorization, sycophancy, logical inconsistencies, hallucinations that exist just as a warning to the overly optimistic. We note here that just as this emergence of AI seems to occur at a threshold point in the number of neural connections or weights, it has also been observed that human brain and especially the cortex region is nothing special or extraordinary but simply a case of scaled-up version of the primate brain and that even the human intelligence seems like an emergent phenomena of scale.
- Abstract(参考訳): 我々は,AIとディープラーニングの急速な発展を鳥の目で見ることで,大規模言語モデルにおけるAIの進路を突破した。
本研究の目的は、1970年代から1990年代にかけてAIの冬を生んだ悲観主義を伴わずに、これらすべての発展を誇張することなく、実践的な歴史的社会的な視点で、より広い歴史的視点に配置することである。
同時に、過度に楽観的な人々への警告として存在する毒性、偏見、記憶、梅毒、論理的不一致、幻覚も指摘しています。
ここでは、このAIの出現が神経接続や体重のしきい値に現れるのと同じように、人間の脳、特に大脳皮質領域は特別なものではなく、単に霊長類の脳のスケールアップバージョンであり、人間の知性でさえ、スケールの創発的な現象のように見えることも観察されている。
関連論文リスト
- Cognition is All You Need -- The Next Layer of AI Above Large Language
Models [0.0]
我々は,大規模言語モデル以外のニューロシンボリック認知のためのフレームワークであるCognitive AIを紹介する。
我々は、認知AIがAGIのようなAI形態の進化に必須の先駆者であり、AGIは独自の確率論的アプローチでは達成できないと主張する。
我々は、大規模言語モデル、AIの採用サイクル、および商用の認知AI開発に関する議論で締めくくります。
論文 参考訳(メタデータ) (2024-03-04T16:11:57Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
生成AIの最近の波は、潜在的に超人的な人工知能レベルに対する興奮と懸念を引き起こしている。
同時に、モデルは、専門家でない人でも期待できないような理解の基本的な誤りを示している。
一見超人的な能力と、ごく少数の人間が起こすエラーの持続性を、どうやって再現すればよいのか?
論文 参考訳(メタデータ) (2023-10-31T18:07:07Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Suffering Toasters -- A New Self-Awareness Test for AI [0.0]
現在のインテリジェンステストはすべて、インテリジェンスの存在や欠如を示すには不十分である、と我々は主張する。
人工自己認識のための新しい手法を提案し,その実装の概要を述べる。
論文 参考訳(メタデータ) (2023-06-29T18:58:01Z) - Understanding Natural Language Understanding Systems. A Critical
Analysis [91.81211519327161]
自然言語理解システム(Natural Language Understanding (NLU) system)としても知られる usguillemotright(英語版) のようなギユモトレフトークを持つ機械の開発は、人工知能の聖杯(英語版) (AI) である。
しかし、Gillemottalking machineguillemotrightを構築することができるという信頼は、次世代のNLUシステムによってもたらされたものよりも強かった。
私たちは新しい時代の夜明けに、ついに砂利が我々に近づいたのか?
論文 参考訳(メタデータ) (2023-03-01T08:32:55Z) - A brief history of AI: how to prevent another winter (a critical review) [0.6299766708197883]
何十年もの間、AIの進化について簡単に説明し、その決定的な瞬間と、開始から現在への大きな転換点を強調しています。
その際、我々は学び、未来を予測し、また別の「冬」を防ぐためにどのような措置をとるかについて議論する。
論文 参考訳(メタデータ) (2021-09-03T13:41:46Z) - A clarification of misconceptions, myths and desired status of
artificial intelligence [0.0]
我々は,機械学習と統計学に関して,AIの望ましい現状と現状を考察する。
私たちの議論は、AIを取り巻く曖昧さのベールを解明して、その真の数量を見ることを目的としています。
論文 参考訳(メタデータ) (2020-08-03T17:22:53Z) - Dynamic Cognition Applied to Value Learning in Artificial Intelligence [0.0]
この分野の数人の研究者が、堅牢で有益で安全な人工知能の概念を開発しようとしている。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
この問題に対する可能なアプローチは、SEDのような理論モデルを使用することである。
論文 参考訳(メタデータ) (2020-05-12T03:58:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。