論文の概要: "I Am the One and Only, Your Cyber BFF": Understanding the Impact of GenAI Requires Understanding the Impact of Anthropomorphic AI
- arxiv url: http://arxiv.org/abs/2410.08526v1
- Date: Fri, 11 Oct 2024 04:57:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 23:24:44.944102
- Title: "I Am the One and Only, Your Cyber BFF": Understanding the Impact of GenAI Requires Understanding the Impact of Anthropomorphic AI
- Title(参考訳): I Am the One and Only, Your Cyber BFF: GenAIの影響を理解するには人類型AIの影響を理解する必要がある
- Authors: Myra Cheng, Alicia DeVrio, Lisa Egede, Su Lin Blodgett, Alexandra Olteanu,
- Abstract要約: 我々は、人為的AIの社会的影響をマッピングしない限り、生成AIの社会的影響を徹底的にマッピングすることはできないと論じる。
人為的AIシステムは、人間のように知覚されるアウトプットを生成する傾向が強まっている。
- 参考スコア(独自算出の注目度): 55.99010491370177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many state-of-the-art generative AI (GenAI) systems are increasingly prone to anthropomorphic behaviors, i.e., to generating outputs that are perceived to be human-like. While this has led to scholars increasingly raising concerns about possible negative impacts such anthropomorphic AI systems can give rise to, anthropomorphism in AI development, deployment, and use remains vastly overlooked, understudied, and underspecified. In this perspective, we argue that we cannot thoroughly map the social impacts of generative AI without mapping the social impacts of anthropomorphic AI, and outline a call to action.
- Abstract(参考訳): 最先端のジェネレーティブAI(GenAI)システムの多くは、人為的行動、すなわち人間に類似したアウトプットを生成する傾向が増している。
このことが、人類型AIシステムのようなネガティブな影響の可能性への懸念を増大させているが、AI開発、展開、使用における人為的同型は、見過ごされ、調査され、未特定のままである。
この観点からは、人為的AIの社会的影響をマッピングすることなく、生成AIの社会的影響を徹底的にマッピングすることはできないと論じ、行動への呼びかけを概説する。
関連論文リスト
- Predicting the Impact of Generative AI Using an Agent-Based Model [0.0]
生成人工知能(AI)システムは、人間の創造性を模倣するコンテンツを自律的に生成することで産業を変革した。
本稿ではエージェント・ベース・モデリング(ABM)を用いてこれらの意味を探索する。
ABMは個人、ビジネス、政府エージェントを統合し、教育、スキル獲得、AIの採用、規制対応などのダイナミクスをシミュレートする。
論文 参考訳(メタデータ) (2024-08-30T13:13:56Z) - Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - Problem Solving Through Human-AI Preference-Based Cooperation [74.39233146428492]
我々は,人間-AI共同構築フレームワークであるHAI-Co2を提案する。
我々は、HAI-Co2を形式化し、それが直面する困難なオープンリサーチ問題について議論する。
本稿では,HAI-Co2のケーススタディと,モノリシックな生成型AIモデルとの比較による有効性を示す。
論文 参考訳(メタデータ) (2024-08-14T11:06:57Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
生成AIの最近の波は、潜在的に超人的な人工知能レベルに対する興奮と懸念を引き起こしている。
同時に、モデルは、専門家でない人でも期待できないような理解の基本的な誤りを示している。
一見超人的な能力と、ごく少数の人間が起こすエラーの持続性を、どうやって再現すればよいのか?
論文 参考訳(メタデータ) (2023-10-31T18:07:07Z) - Human-AI Interactions and Societal Pitfalls [1.6413583085553642]
生成人工知能(AI)を利用すると、ユーザーは生産性が向上するかもしれないが、AI生成コンテンツは好みと正確に一致しないかもしれない。
個人レベルの意思決定とAIトレーニングの相互作用が社会的課題を引き起こす可能性があることを示す。
均質化とバイアス問題の解決策は、生産性を犠牲にすることなく、パーソナライズされたアウトプットを可能にする、人間とAIのインタラクションを改善することである。
論文 参考訳(メタデータ) (2023-09-19T09:09:59Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Anthropomorphization of AI: Opportunities and Risks [24.137106159123892]
擬人化は、人間的な特徴を非人間的な実体に当てはめる傾向である。
AIシステムが広く採用されるにつれて、ユーザーがそれを人為的に形作る傾向は著しく高まっている。
我々は、近年のAI権利章典の青写真を通して分析された、客観的な法的意味について研究する。
論文 参考訳(メタデータ) (2023-05-24T06:39:45Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - On the Influence of Explainable AI on Automation Bias [0.0]
我々は、説明可能なAI(XAI)によって自動化バイアスに影響を与える可能性に光を当てることを目指している。
ホテルのレビュー分類に関するオンライン実験を行い、最初の結果について議論する。
論文 参考訳(メタデータ) (2022-04-19T12:54:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。