ITINERA: Integrating Spatial Optimization with Large Language Models for Open-domain Urban Itinerary Planning
- URL: http://arxiv.org/abs/2402.07204v4
- Date: Wed, 16 Oct 2024 15:28:18 GMT
- Title: ITINERA: Integrating Spatial Optimization with Large Language Models for Open-domain Urban Itinerary Planning
- Authors: Yihong Tang, Zhaokai Wang, Ao Qu, Yihao Yan, Zhaofeng Wu, Dingyi Zhuang, Jushi Kai, Kebing Hou, Xiaotong Guo, Jinhua Zhao, Zhan Zhao, Wei Ma,
- Abstract summary: We introduce the novel task of Open-domain Urban Itinerary Planning (OUIP)
OUIP generates personalized urban itineraries from user requests in natural language.
We present ITINERA, an OUIP system that integrates spatial optimization with large language models to provide customized urban itineraries.
- Score: 17.250579851469695
- License:
- Abstract: Citywalk, a recently popular form of urban travel, requires genuine personalization and understanding of fine-grained requests compared to traditional itinerary planning. In this paper, we introduce the novel task of Open-domain Urban Itinerary Planning (OUIP), which generates personalized urban itineraries from user requests in natural language. We then present ITINERA, an OUIP system that integrates spatial optimization with large language models to provide customized urban itineraries based on user needs. This involves decomposing user requests, selecting candidate points of interest (POIs), ordering the POIs based on cluster-aware spatial optimization, and generating the itinerary. Experiments on real-world datasets and the performance of the deployed system demonstrate our system's capacity to deliver personalized and spatially coherent itineraries compared to current solutions. Source codes of ITINERA are available at https://github.com/YihongT/ITINERA.
Related papers
- To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning [54.9340658451129]
To the Globe (TTG) is a real-time demo system that takes natural language requests from users and translates it to symbolic form.
The overall system takes 5 seconds to reply to the user request with guaranteed itineraries.
When evaluated by users, TTG achieves consistently high Net Promoter Scores (NPS) of 35-40% on generated itinerary.
arXiv Detail & Related papers (2024-10-21T19:30:05Z) - Can Machine Learning Uncover Insights into Vehicle Travel Demand from
Our Built Environment? [6.878774457703503]
We propose a machine learning-based approach to address the lack of ability for designers to optimize urban land use planning from the perspective of vehicle travel demand.
Research shows that our computational model can help designers quickly obtain feedback on the vehicle travel demand.
arXiv Detail & Related papers (2023-11-10T06:52:17Z) - BTRec: BERT-Based Trajectory Recommendation for Personalized Tours [6.753123338256321]
Many tour recommendation tools only take into account a limited number of factors, such as popular Points of Interest (POIs) and routing constraints.
We propose an iterative algorithm in this paper, namely: BTREC (BERT-based Trajectory Recommendation), that extends from the POIBERT embedding algorithm to recommend personalized itineraries on POIs.
Our recommendation system can create a travel itinerary that maximizes POIs visited, while also taking into account user preferences for categories of POIs and time availability.
arXiv Detail & Related papers (2023-10-30T18:00:26Z) - POIBERT: A Transformer-based Model for the Tour Recommendation Problem [0.3121997724420106]
We propose POIBERT, an algorithm for recommending personalized itineraries using the BERT language model on POIs.
Our recommendation algorithm is able to generate a sequence of POIs that optimize time and users' preference in POI categories based on past trajectories from similar tourists.
arXiv Detail & Related papers (2022-12-16T12:32:15Z) - Human-instructed Deep Hierarchical Generative Learning for Automated
Urban Planning [57.91323079939641]
We develop a novel human-instructed deep hierarchical generative model to generate optimal urban plans.
The first stage is to label the grids of a target area with latent functionalities to discover functional zones.
The second stage is to perceive the planning requirements to form urban functionality projections.
The third stage is to leverage multi-attentions to model the zone-zone peer dependencies of the functionality projections to generate grid-level land-use configurations.
arXiv Detail & Related papers (2022-12-01T23:06:41Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Differentiable Spatial Planning using Transformers [87.90709874369192]
We propose Spatial Planning Transformers (SPT), which given an obstacle map learns to generate actions by planning over long-range spatial dependencies.
In the setting where the ground truth map is not known to the agent, we leverage pre-trained SPTs in an end-to-end framework.
SPTs outperform prior state-of-the-art differentiable planners across all the setups for both manipulation and navigation tasks.
arXiv Detail & Related papers (2021-12-02T06:48:16Z) - User Preferential Tour Recommendation Based on POI-Embedding Methods [0.624399544884021]
We propose an algorithm to recommend personalized tours using POI-embedding methods.
Our recommendation algorithm will generate a sequence of POIs that optimize time and locational constraints.
Preliminary experimental results show that our algorithm is able to recommend a relevant and accurate itinerary.
arXiv Detail & Related papers (2021-03-03T15:18:23Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations.
A population density map, obtained on-the-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building.
arXiv Detail & Related papers (2020-04-25T22:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.