論文の概要: Malicious Package Detection using Metadata Information
- arxiv url: http://arxiv.org/abs/2402.07444v1
- Date: Mon, 12 Feb 2024 06:54:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 11:29:11.584235
- Title: Malicious Package Detection using Metadata Information
- Title(参考訳): メタデータ情報を用いた悪意パッケージ検出
- Authors: S. Halder, M. Bewong, A. Mahboubi, Y. Jiang, R. Islam, Z. Islam, R. Ip, E. Ahmed, G. Ramachandran, A. Babar,
- Abstract要約: 本稿では,メタデータに基づく悪意のあるパッケージ検出モデルであるMeMPtecを紹介する。
MeMPtecはパッケージメタデータ情報から一連の機能を抽出する。
実験の結果,偽陽性と偽陰性の両方が有意な減少を示した。
- 参考スコア(独自算出の注目度): 0.272760415353533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Protecting software supply chains from malicious packages is paramount in the evolving landscape of software development. Attacks on the software supply chain involve attackers injecting harmful software into commonly used packages or libraries in a software repository. For instance, JavaScript uses Node Package Manager (NPM), and Python uses Python Package Index (PyPi) as their respective package repositories. In the past, NPM has had vulnerabilities such as the event-stream incident, where a malicious package was introduced into a popular NPM package, potentially impacting a wide range of projects. As the integration of third-party packages becomes increasingly ubiquitous in modern software development, accelerating the creation and deployment of applications, the need for a robust detection mechanism has become critical. On the other hand, due to the sheer volume of new packages being released daily, the task of identifying malicious packages presents a significant challenge. To address this issue, in this paper, we introduce a metadata-based malicious package detection model, MeMPtec. This model extracts a set of features from package metadata information. These extracted features are classified as either easy-to-manipulate (ETM) or difficult-to-manipulate (DTM) features based on monotonicity and restricted control properties. By utilising these metadata features, not only do we improve the effectiveness of detecting malicious packages, but also we demonstrate its resistance to adversarial attacks in comparison with existing state-of-the-art. Our experiments indicate a significant reduction in both false positives (up to 97.56%) and false negatives (up to 91.86%).
- Abstract(参考訳): ソフトウェアサプライチェーンを悪意のあるパッケージから保護することは、ソフトウェア開発の進化する状況において最重要である。
ソフトウェアサプライチェーンに対する攻撃は、攻撃者がソフトウェアリポジトリ内の一般的に使用されるパッケージやライブラリに有害なソフトウェアを注入することを含む。
例えば、JavaScriptはNode Package Manager(NPM)、PythonはPython Package Index(PyPi)をそれぞれのパッケージリポジトリとして使用する。
これまでNPMには、悪質なパッケージが人気のあるNPMパッケージに導入されたイベントストリームインシデントのような脆弱性があり、幅広いプロジェクトに影響を与える可能性がある。
現代のソフトウェア開発において、サードパーティパッケージの統合がますます普及し、アプリケーションの作成とデプロイが加速するにつれて、堅牢な検出メカニズムの必要性が重要になっている。
一方、毎日新しいパッケージが大量にリリースされているため、悪意のあるパッケージを識別するタスクは重大な課題となっている。
本稿では,メタデータに基づく悪意のあるパッケージ検出モデルであるMeMPtecを提案する。
このモデルは,パッケージメタデータ情報から一連の特徴を抽出する。
これらの特徴は, 単調性および制限制御特性に基づいて, 操作容易性 (ETM) と操作容易性 (DTM) のいずれかに分類される。
これらのメタデータ機能を利用することで、悪意のあるパッケージの検出の有効性を向上するだけでなく、既存の最先端技術と比較して敵攻撃に対する抵抗性を実証する。
実験の結果,偽陽性(最大97.56%)と偽陰性(最大91.86%)は有意な減少を示した。
関連論文リスト
- The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - A Large-scale Fine-grained Analysis of Packages in Open-Source Software Ecosystems [13.610690659041417]
悪意のあるパッケージはメタデータの内容が少なく、正規のパッケージよりも静的関数や動的関数が少ない。
きめ細かい情報(FGI)の1次元は、悪意のあるパッケージを検出するのに十分な識別能力を持っている。
論文 参考訳(メタデータ) (2024-04-17T15:16:01Z) - OSS Malicious Package Analysis in the Wild [17.028240712650486]
本稿では、散在するオンラインソースから23,425の悪意あるパッケージのデータセットを構築し、キュレートする。
次に,OSSマルウェアコーパスを表現し,悪意のあるパッケージ解析を行う知識グラフを提案する。
論文 参考訳(メタデータ) (2024-04-07T15:25:13Z) - DONAPI: Malicious NPM Packages Detector using Behavior Sequence Knowledge Mapping [28.852274185512236]
npmは最も広範なパッケージマネージャであり、200万人以上のサードパーティのオープンソースパッケージをホストしている。
本稿では,340万以上のパッケージを含むローカルパッケージキャッシュをほぼリアルタイムで同期させ,より詳細なパッケージコードにアクセスできるようにする。
静的解析と動的解析を組み合わせた自動悪質npmパッケージ検出器であるDONAPIを提案する。
論文 参考訳(メタデータ) (2024-03-13T08:38:21Z) - Model Supply Chain Poisoning: Backdooring Pre-trained Models via Embedding Indistinguishability [61.549465258257115]
そこで我々は,PTMに埋め込まれたバックドアをモデルサプライチェーンに効率的に移動させる,新しい,より厳しいバックドア攻撃であるTransTrojを提案する。
実験の結果,本手法はSOTAタスク非依存のバックドア攻撃より有意に優れていた。
論文 参考訳(メタデータ) (2024-01-29T04:35:48Z) - On the Feasibility of Cross-Language Detection of Malicious Packages in
npm and PyPI [6.935278888313423]
悪意のあるユーザは悪意のあるコードを含むオープンソースパッケージを公開することでマルウェアを拡散し始めた。
最近の研究は、npmエコシステム内の悪意あるパッケージを検出するために機械学習技術を適用している。
言語に依存しない一連の特徴と,npm と PyPI の悪意あるパッケージを検出可能なモデルのトレーニングを含む,新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-14T12:32:51Z) - Putting a Padlock on Lambda -- Integrating vTPMs into AWS Firecracker [49.1574468325115]
ソフトウェアサービスは、明確な信頼関係なしに、クラウドプロバイダに対して暗黙の信頼を置いている。
現在、Trusted Platform Module機能を公開するクラウドプロバイダは存在しない。
仮想TPMデバイスをAmazon Web Servicesによって開発されたFirecrackerに統合することで信頼性を向上させる。
論文 参考訳(メタデータ) (2023-10-05T13:13:55Z) - Malicious Package Detection in NPM and PyPI using a Single Model of
Malicious Behavior Sequence [7.991922551051611]
パッケージレジストリ NPM と PyPI は悪意のあるパッケージで溢れている。
既存の悪意あるNPMとPyPIパッケージ検出アプローチの有効性は、2つの課題によって妨げられている。
我々は,NPMとPyPIの悪意あるパッケージを検出するためにCerebroを提案し,実装する。
論文 参考訳(メタデータ) (2023-09-06T00:58:59Z) - On the Security Blind Spots of Software Composition Analysis [46.1389163921338]
Mavenリポジトリで脆弱性のあるクローンを検出するための新しいアプローチを提案する。
Maven Centralから53万以上の潜在的な脆弱性のあるクローンを検索します。
検出された727個の脆弱なクローンを検出し、それぞれに検証可能な脆弱性証明プロジェクトを合成する。
論文 参考訳(メタデータ) (2023-06-08T20:14:46Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。