論文の概要: Privacy-Optimized Randomized Response for Sharing Multi-Attribute Data
- arxiv url: http://arxiv.org/abs/2402.07584v1
- Date: Mon, 12 Feb 2024 11:34:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 11:29:11.578618
- Title: Privacy-Optimized Randomized Response for Sharing Multi-Attribute Data
- Title(参考訳): マルチ属性データ共有のためのプライバシ最適化ランダム化応答
- Authors: Akito Yamamoto, Tetsuo Shibuya,
- Abstract要約: マルチ属性データの共有において最強のプライバシを保証するために,プライバシ最適化ランダム化応答を提案する。
また、近似属性機構を構築するための効率的なアルゴリズムを提案する。
提案手法は,既存の手法に比べて,データセット全体のプライバシー保証を大幅に強化する。
- 参考スコア(独自算出の注目度): 1.1510009152620668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing amount of data in society, privacy concerns in data sharing have become widely recognized. Particularly, protecting personal attribute information is essential for a wide range of aims from crowdsourcing to realizing personalized medicine. Although various differentially private methods based on randomized response have been proposed for single attribute information or specific analysis purposes such as frequency estimation, there is a lack of studies on the mechanism for sharing individuals' multiple categorical information itself. The existing randomized response for sharing multi-attribute data uses the Kronecker product to perturb each attribute information in turn according to the respective privacy level but achieves only a weak privacy level for the entire dataset. Therefore, in this study, we propose a privacy-optimized randomized response that guarantees the strongest privacy in sharing multi-attribute data. Furthermore, we present an efficient heuristic algorithm for constructing a near-optimal mechanism. The time complexity of our algorithm is O(k^2), where k is the number of attributes, and it can be performed in about 1 second even for large datasets with k = 1,000. The experimental results demonstrate that both of our methods provide significantly stronger privacy guarantees for the entire dataset than the existing method. In addition, we show an analysis example using genome statistics to confirm that our methods can achieve less than half the output error compared with that of the existing method. Overall, this study is an important step toward trustworthy sharing and analysis of multi-attribute data. The Python implementation of our experiments and supplemental results are available at https://github.com/ay0408/Optimized-RR.
- Abstract(参考訳): 社会におけるデータ量の増加に伴い、データ共有におけるプライバシーの懸念が広く認識されるようになった。
特に,個人属性情報の保護は,クラウドソーシングからパーソナライズド医療の実現に至るまで,幅広い目的に不可欠である。
単一属性情報や周波数推定などの特定の分析目的のために、ランダム化応答に基づく様々な微分プライベートな手法が提案されているが、個人の複数のカテゴリ情報そのものを共有するメカニズムについての研究は乏しい。
マルチ属性データを共有するための既存のランダム化レスポンスは、Kronecker製品を使用して、各プライバシレベルに応じて各属性情報を順番に摂動するが、データセット全体の弱いプライバシレベルしか達成しない。
そこで本研究では,マルチ属性データの共有において最強のプライバシを保証する,プライバシ最適化ランダム化応答を提案する。
さらに,準最適機構を構築するための効率的なヒューリスティックアルゴリズムを提案する。
我々のアルゴリズムの時間複雑性は O(k^2) であり、k は属性の数であり、k = 1000 の大規模データセットであっても約 1 秒で実行できる。
実験結果から,本手法は既存の手法に比べて,データセット全体のプライバシー保証を著しく向上することが示された。
さらに,本手法が既存の手法と比較して出力誤差の半分未満を達成可能であることを確認するために,ゲノム統計を用いた分析例を示す。
全体として、本研究は多属性データの信頼に値する共有と分析に向けた重要なステップである。
実験と補足結果のPython実装はhttps://github.com/ay0408/Optimized-RRで公開されている。
関連論文リスト
- Causal Inference with Differentially Private (Clustered) Outcomes [16.166525280886578]
ランダム化実験から因果効果を推定することは、参加者が反応を明らかにすることに同意すれば実現可能である。
我々は,任意のクラスタ構造を利用する新たな差分プライバシメカニズムであるCluster-DPを提案する。
クラスタの品質を直感的に測定することで,プライバシ保証を維持しながら分散損失を改善することができることを示す。
論文 参考訳(メタデータ) (2023-08-02T05:51:57Z) - Mean Estimation with User-level Privacy under Data Heterogeneity [54.07947274508013]
異なるユーザーは、非常に多くの異なるデータポイントを持っているかもしれない。
すべてのユーザが同じディストリビューションからサンプルを採取していると仮定することはできない。
本研究では,データの分布と量の両方でユーザデータが異なる異質なユーザデータの単純なモデルを提案する。
論文 参考訳(メタデータ) (2023-07-28T23:02:39Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Differentially Private Multi-Party Data Release for Linear Regression [40.66319371232736]
Differentially Private (DP) データリリースは、データ対象のプライバシを損なうことなくデータを広める、有望なテクニックである。
本稿では、異なる利害関係者が同じデータ対象グループに属する不整合な属性セットを所有するマルチパーティ設定に焦点を当てる。
提案手法は,データセットサイズが増大する最適(プライベートでない)解に収束することを示す。
論文 参考訳(メタデータ) (2022-06-16T08:32:17Z) - Private measures, random walks, and synthetic data [7.5764890276775665]
微分プライバシーは、情報理論のセキュリティ保証を提供する数学的概念である。
我々は、プライベートな合成データを効率的に構築できるデータセットからプライベートな尺度を開発する。
我々の構築における重要な要素は、独立確率変数と同様の連立分布を持つ新しい超規則ランダムウォークである。
論文 参考訳(メタデータ) (2022-04-20T00:06:52Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
それぞれの入力特徴が個人のプライバシ損失に与える影響について検討する。
プライベートデータベース上でのクエリに対する我々のアプローチを実験的に評価する。
また、合成データにおけるニューラルネットワークトレーニングの文脈における知見についても検討する。
論文 参考訳(メタデータ) (2021-09-22T08:29:16Z) - Attribute Privacy: Framework and Mechanisms [26.233612860653025]
本研究では、データ所有者が分析中にデータセット全体の機密性を明らかにすることに関心を持つ属性プライバシの研究を行う。
我々は,グローバル属性を保護する必要がある2つのケースにおいて,インパトリビュートプライバシを捕捉するための定義を提案する。
これらの設定の属性プライバシーを満足する2つの効率的なメカニズムと1つの非効率的なメカニズムを提供する。
論文 参考訳(メタデータ) (2020-09-08T22:38:57Z) - Differentially Private Simple Linear Regression [2.614403183902121]
差分プライバシーを満たす単純な線形回帰のアルゴリズムについて検討する。
小データセットに対する単純な線形回帰のための微分プライベートアルゴリズムの設計を考察する。
設定に適応するアルゴリズムのスペクトルの性能について検討する。
論文 参考訳(メタデータ) (2020-07-10T04:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。