論文の概要: Private measures, random walks, and synthetic data
- arxiv url: http://arxiv.org/abs/2204.09167v2
- Date: Sat, 23 Mar 2024 04:41:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 06:12:57.495190
- Title: Private measures, random walks, and synthetic data
- Title(参考訳): 個人的措置、ランダムウォーク、および合成データ
- Authors: March Boedihardjo, Thomas Strohmer, Roman Vershynin,
- Abstract要約: 微分プライバシーは、情報理論のセキュリティ保証を提供する数学的概念である。
我々は、プライベートな合成データを効率的に構築できるデータセットからプライベートな尺度を開発する。
我々の構築における重要な要素は、独立確率変数と同様の連立分布を持つ新しい超規則ランダムウォークである。
- 参考スコア(独自算出の注目度): 7.5764890276775665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential privacy is a mathematical concept that provides an information-theoretic security guarantee. While differential privacy has emerged as a de facto standard for guaranteeing privacy in data sharing, the known mechanisms to achieve it come with some serious limitations. Utility guarantees are usually provided only for a fixed, a priori specified set of queries. Moreover, there are no utility guarantees for more complex - but very common - machine learning tasks such as clustering or classification. In this paper we overcome some of these limitations. Working with metric privacy, a powerful generalization of differential privacy, we develop a polynomial-time algorithm that creates a private measure from a data set. This private measure allows us to efficiently construct private synthetic data that are accurate for a wide range of statistical analysis tools. Moreover, we prove an asymptotically sharp min-max result for private measures and synthetic data for general compact metric spaces. A key ingredient in our construction is a new superregular random walk, whose joint distribution of steps is as regular as that of independent random variables, yet which deviates from the origin logarithmicaly slowly.
- Abstract(参考訳): 微分プライバシーは、情報理論のセキュリティ保証を提供する数学的概念である。
差分プライバシーは、データ共有におけるプライバシーを保証するデファクトスタンダードとして登場したが、それを実現するための既知のメカニズムには、いくつかの深刻な制限がある。
ユーティリティ保証は、通常、固定された、指定されたクエリのセットに対してのみ提供される。
さらに、クラスタリングや分類といった、より複雑な、しかし非常に一般的な機械学習タスクに対するユーティリティ保証はありません。
本稿ではこれらの制限を克服する。
差分プライバシの強力な一般化であるメトリックプライバシを用いて、データセットからプライベートな測度を生成する多項式時間アルゴリズムを開発する。
このプライベートな測定により、幅広い統計分析ツールで正確であるプライベートな合成データを効率的に構築することができる。
さらに,一般コンパクトな計量空間に対するプライベート測度と合成データに対して漸近的に鋭い min-max 結果を示す。
我々の構築における重要な要素は、新しい超規則ランダムウォークであり、ステップの連立分布は、独立確率変数と同等に規則的であるが、元の対数から緩やかに逸脱する。
関連論文リスト
- Metric geometry of the privacy-utility tradeoff [7.5764890276775665]
基礎空間の計量幾何学により最適なプライバシー・正確性トレードオフを特徴付けるための枠組みを提案する。
メカニカルスペースのさまざまな例を通して、プライバシ-正確性トレードオフフレームワークの適用性を説明します。
論文 参考訳(メタデータ) (2024-05-01T05:31:53Z) - Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
サブサンプリングによる増幅は、差分プライバシーを持つ機械学習の主要なプリミティブの1つである。
本稿では、メカニズム固有の保証を導出するための最初の一般的なフレームワークを提案する。
サブサンプリングが複数のユーザのプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2024-03-07T19:36:05Z) - Causal Inference with Differentially Private (Clustered) Outcomes [16.166525280886578]
ランダム化実験から因果効果を推定することは、参加者が反応を明らかにすることに同意すれば実現可能である。
我々は,任意のクラスタ構造を利用する新たな差分プライバシメカニズムであるCluster-DPを提案する。
クラスタの品質を直感的に測定することで,プライバシ保証を維持しながら分散損失を改善することができることを示す。
論文 参考訳(メタデータ) (2023-08-02T05:51:57Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
ノイズ低減機構はますます正確な答えを生み出す。
アナリストは、公表された最も騒々しい、あるいは最も正確な回答のプライバシー費用のみを支払う。
ポスト前のプライベートメカニズムがどのように構成されるかは、まだ研究されていない。
我々は、分析者が微分プライベートとポストプライベートのメカニズムを適応的に切り替えることのできるプライバシーフィルタを開発した。
論文 参考訳(メタデータ) (2023-06-24T00:33:34Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Distribution-Invariant Differential Privacy [4.700764053354502]
本研究では,高い統計的精度と厳密な差分プライバシーを両立する分布不変民営化法(DIP)を提案する。
同じ厳密なプライバシー保護の下で、DIPは2つのシミュレーションと3つの実世界のベンチマークで優れた統計的精度を達成する。
論文 参考訳(メタデータ) (2021-11-08T22:26:50Z) - Robust and Differentially Private Mean Estimation [40.323756738056616]
異なるプライバシーは、米国国勢調査から商用デバイスで収集されたデータまで、さまざまなアプリケーションで標準要件として浮上しています。
このようなデータベースの数は、複数のソースからのデータからなり、それらすべてが信頼できるわけではない。
これにより、既存のプライベート分析は、腐敗したデータを注入する敵による攻撃に弱い。
論文 参考訳(メタデータ) (2021-02-18T05:02:49Z) - Bounding, Concentrating, and Truncating: Unifying Privacy Loss
Composition for Data Analytics [2.614355818010333]
アナリストが純粋なDP、境界範囲(指数的なメカニズムなど)、集中的なDPメカニズムを任意の順序で選択できる場合、強いプライバシー損失バウンダリを提供する。
また、アナリストが純粋なDPと境界範囲のメカニズムをバッチで選択できる場合に適用される最適なプライバシー損失境界を提供する。
論文 参考訳(メタデータ) (2020-04-15T17:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。