Foundational Inference Models for Dynamical Systems
- URL: http://arxiv.org/abs/2402.07594v1
- Date: Mon, 12 Feb 2024 11:48:54 GMT
- Title: Foundational Inference Models for Dynamical Systems
- Authors: Patrick Seifner, Kostadin Cvejoski, Ramses J. Sanchez
- Abstract summary: We propose a novel supervised learning framework for zero-shot inference of ODEs from noisy data.
We first generate large datasets of one-dimensional ODEs, by sampling distributions over the space of initial conditions.
We then learn neural maps between noisy observations on the solutions of these equations, and their corresponding initial condition and vector fields.
- Score: 3.95944314850151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ordinary differential equations (ODEs) underlie dynamical systems which serve
as models for a vast number of natural and social phenomena. Yet inferring the
ODE that best describes a set of noisy observations on one such phenomenon can
be remarkably challenging, and the models available to achieve it tend to be
highly specialized and complex too. In this work we propose a novel supervised
learning framework for zero-shot inference of ODEs from noisy data. We first
generate large datasets of one-dimensional ODEs, by sampling distributions over
the space of initial conditions, and the space of vector fields defining them.
We then learn neural maps between noisy observations on the solutions of these
equations, and their corresponding initial condition and vector fields. The
resulting models, which we call foundational inference models (FIM), can be (i)
copied and matched along the time dimension to increase their resolution; and
(ii) copied and composed to build inference models of any dimensionality,
without the need of any finetuning. We use FIM to model both ground-truth
dynamical systems of different dimensionalities and empirical time series data
in a zero-shot fashion, and outperform state-of-the-art models which are
finetuned to these systems. Our (pretrained) FIMs are available online
Related papers
- FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model [5.748690310135373]
We propose a novel multi-modal foundation model, named textbfFMint, to bridge the gap between human-designed and data-driven models.
Built on a decoder-only transformer architecture with in-context learning, FMint utilizes both numerical and textual data to learn a universal error correction scheme.
Our results demonstrate the effectiveness of the proposed model in terms of both accuracy and efficiency compared to classical numerical solvers.
arXiv Detail & Related papers (2024-04-23T02:36:47Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections [6.345523830122166]
We propose PolyODE, a formulation that enforces long-range memory and preserves a global representation of the underlying dynamical system.
Our construction is backed by favourable theoretical guarantees and we demonstrate that it outperforms previous works in the reconstruction of past and future data.
arXiv Detail & Related papers (2023-03-03T10:49:09Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - On the balance between the training time and interpretability of neural
ODE for time series modelling [77.34726150561087]
The paper shows that modern neural ODE cannot be reduced to simpler models for time-series modelling applications.
The complexity of neural ODE is compared to or exceeds the conventional time-series modelling tools.
We propose a new view on time-series modelling using combined neural networks and an ODE system approach.
arXiv Detail & Related papers (2022-06-07T13:49:40Z) - Neural ODEs with Irregular and Noisy Data [8.349349605334316]
We discuss a methodology to learn differential equation(s) using noisy and irregular sampled measurements.
In our methodology, the main innovation can be seen in the integration of deep neural networks with the neural ordinary differential equations (ODEs) approach.
The proposed framework to learn a model describing the vector field is highly effective under noisy measurements.
arXiv Detail & Related papers (2022-05-19T11:24:41Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
This study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles.
We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments.
We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach.
arXiv Detail & Related papers (2021-10-22T15:43:03Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Artificial neural network as a universal model of nonlinear dynamical
systems [0.0]
The map is built as an artificial neural network whose weights encode a modeled system.
We consider the Lorenz system, the Roessler system and also Hindmarch-Rose neuron.
High similarity is observed for visual images of attractors, power spectra, bifurcation diagrams and Lyapunovs exponents.
arXiv Detail & Related papers (2021-03-06T16:02:41Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
We propose a new regularization technique: randomly sampling the end time of the ODE during training.
The proposed regularization is simple to implement, has negligible overhead and is effective across a wide variety of tasks.
We show through experiments on normalizing flows, time series models and image recognition that the proposed regularization can significantly decrease training time and even improve performance over baseline models.
arXiv Detail & Related papers (2020-06-18T17:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.