Sheet Music Transformer: End-To-End Optical Music Recognition Beyond Monophonic Transcription
- URL: http://arxiv.org/abs/2402.07596v2
- Date: Mon, 29 Apr 2024 09:53:57 GMT
- Title: Sheet Music Transformer: End-To-End Optical Music Recognition Beyond Monophonic Transcription
- Authors: Antonio RĂos-Vila, Jorge Calvo-Zaragoza, Thierry Paquet,
- Abstract summary: Sheet Music Transformer is the first end-to-end OMR model designed to transcribe complex musical scores without relying solely on monophonic strategies.
Our model has been tested on two polyphonic music datasets and has proven capable of handling these intricate music structures effectively.
- Score: 13.960714900433269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art end-to-end Optical Music Recognition (OMR) has, to date, primarily been carried out using monophonic transcription techniques to handle complex score layouts, such as polyphony, often by resorting to simplifications or specific adaptations. Despite their efficacy, these approaches imply challenges related to scalability and limitations. This paper presents the Sheet Music Transformer, the first end-to-end OMR model designed to transcribe complex musical scores without relying solely on monophonic strategies. Our model employs a Transformer-based image-to-sequence framework that predicts score transcriptions in a standard digital music encoding format from input images. Our model has been tested on two polyphonic music datasets and has proven capable of handling these intricate music structures effectively. The experimental outcomes not only indicate the competence of the model, but also show that it is better than the state-of-the-art methods, thus contributing to advancements in end-to-end OMR transcription.
Related papers
- MuseBarControl: Enhancing Fine-Grained Control in Symbolic Music Generation through Pre-Training and Counterfactual Loss [51.85076222868963]
We introduce a pre-training task designed to link control signals directly with corresponding musical tokens.
We then implement a novel counterfactual loss that promotes better alignment between the generated music and the control prompts.
arXiv Detail & Related papers (2024-07-05T08:08:22Z) - End-to-End Real-World Polyphonic Piano Audio-to-Score Transcription with Hierarchical Decoding [4.604877755214193]
Existing end-to-end piano A2S systems have been trained and evaluated with only synthetic data.
We propose a sequence-to-sequence (Seq2Seq) model with a hierarchical decoder that aligns with the hierarchical structure of musical scores.
We propose a two-stage training scheme, which involves pre-training the model using an expressive performance rendering system on synthetic audio, followed by fine-tuning the model using recordings of human performance.
arXiv Detail & Related papers (2024-05-22T10:52:04Z) - End-to-End Full-Page Optical Music Recognition for Pianoform Sheet Music [12.779526750915707]
We present the first truly end-to-end approach for page-level Optical Music Recognition.
Our system processes an entire music score page and outputs a complete transcription in a music encoding format.
The results demonstrate that our system not only successfully transcribes full-page music scores but also outperforms the commercial tool in both zero-shot settings and after fine-tuning with the target domain.
arXiv Detail & Related papers (2024-05-20T15:21:48Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGen is a single Language Model (LM) that operates over several streams of compressed discrete music representation, i.e., tokens.
Unlike prior work, MusicGen is comprised of a single-stage transformer LM together with efficient token interleaving patterns.
arXiv Detail & Related papers (2023-06-08T15:31:05Z) - RMSSinger: Realistic-Music-Score based Singing Voice Synthesis [56.51475521778443]
RMS-SVS aims to generate high-quality singing voices given realistic music scores with different note types.
We propose RMSSinger, the first RMS-SVS method, which takes realistic music scores as input.
In RMSSinger, we introduce word-level modeling to avoid the time-consuming phoneme duration annotation and the complicated phoneme-level mel-note alignment.
arXiv Detail & Related papers (2023-05-18T03:57:51Z) - Music Enhancement via Image Translation and Vocoding [14.356705444361832]
This paper presents a deep learning approach to enhance low-quality music recordings.
We combine an image-to-image translation model for manipulating audio in its mel-spectrogram representation and a music vocoding model for mapping synthetically generated mel-spectrograms to perceptually realistic waveforms.
We find that this approach to music enhancement outperforms baselines which use classical methods for mel-spectrogram inversion and an end-to-end approach directly mapping noisy waveforms to clean waveforms.
arXiv Detail & Related papers (2022-04-28T05:00:07Z) - Late multimodal fusion for image and audio music transcription [0.0]
multimodal image and audio music transcription comprises the challenge of effectively combining the information conveyed by image and audio modalities.
We study four combination approaches in order to merge, for the first time, the hypotheses regarding end-to-end OMR and AMT systems.
Two of the four strategies considered significantly improve the corresponding unimodal standard recognition frameworks.
arXiv Detail & Related papers (2022-04-06T20:00:33Z) - End-to-end Audio-visual Speech Recognition with Conformers [65.30276363777514]
We present a hybrid CTC/Attention model based on a ResNet-18 and Convolution-augmented transformer (Conformer)
In particular, the audio and visual encoders learn to extract features directly from raw pixels and audio waveforms.
We show that our proposed models raise the state-of-the-art performance by a large margin in audio-only, visual-only, and audio-visual experiments.
arXiv Detail & Related papers (2021-02-12T18:00:08Z) - Unsupervised Cross-Domain Singing Voice Conversion [105.1021715879586]
We present a wav-to-wav generative model for the task of singing voice conversion from any identity.
Our method utilizes both an acoustic model, trained for the task of automatic speech recognition, together with melody extracted features to drive a waveform-based generator.
arXiv Detail & Related papers (2020-08-06T18:29:11Z) - Optical Music Recognition: State of the Art and Major Challenges [0.0]
Optical Music Recognition (OMR) is concerned with transcribing sheet music into a machine-readable format.
The transcribed copy should allow musicians to compose, play and edit music by taking a picture of a music sheet.
Recently, there has been a shift in OMR from using conventional computer vision techniques towards a deep learning approach.
arXiv Detail & Related papers (2020-06-14T12:40:17Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
We present VaPar Synth - a Variational Parametric Synthesizer which utilizes a conditional variational autoencoder (CVAE) trained on a suitable parametric representation.
We demonstrate our proposed model's capabilities via the reconstruction and generation of instrumental tones with flexible control over their pitch.
arXiv Detail & Related papers (2020-03-30T16:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.