Quantitative knowledge retrieval from large language models
- URL: http://arxiv.org/abs/2402.07770v1
- Date: Mon, 12 Feb 2024 16:32:37 GMT
- Title: Quantitative knowledge retrieval from large language models
- Authors: David Selby, Kai Spriestersbach, Yuichiro Iwashita, Dennis Bappert,
Archana Warrier, Sumantrak Mukherjee, Muhammad Nabeel Asim, Koichi Kise,
Sebastian Vollmer
- Abstract summary: Large language models (LLMs) have been extensively studied for their abilities to generate convincing natural language sequences.
This paper explores the feasibility of LLMs as a mechanism for quantitative knowledge retrieval to aid data analysis tasks.
- Score: 4.155711233354597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have been extensively studied for their
abilities to generate convincing natural language sequences, however their
utility for quantitative information retrieval is less well understood. In this
paper we explore the feasibility of LLMs as a mechanism for quantitative
knowledge retrieval to aid data analysis tasks such as elicitation of prior
distributions for Bayesian models and imputation of missing data. We present a
prompt engineering framework, treating an LLM as an interface to a latent space
of scientific literature, comparing responses in different contexts and domains
against more established approaches. Implications and challenges of using LLMs
as 'experts' are discussed.
Related papers
- Adapter-based Approaches to Knowledge-enhanced Language Models -- A Survey [48.52320309766703]
Knowledge-enhanced language models (KELMs) have emerged as promising tools to bridge the gap between large-scale language models and domain-specific knowledge.
KELMs can achieve higher factual accuracy and hallucinations by leveraging knowledge graphs (KGs)
arXiv Detail & Related papers (2024-11-25T14:10:24Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - A Survey on Efficient Inference for Large Language Models [25.572035747669275]
Large Language Models (LLMs) have attracted extensive attention due to their remarkable performance across various tasks.
The substantial computational and memory requirements of LLM inference pose challenges for deployment in resource-constrained scenarios.
This paper presents a comprehensive survey of the existing literature on efficient LLM inference.
arXiv Detail & Related papers (2024-04-22T15:53:08Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - MechGPT, a language-based strategy for mechanics and materials modeling
that connects knowledge across scales, disciplines and modalities [0.0]
We use a Large Language Model (LLM) to distill question-answer pairs from raw sources followed by fine-tuning.
The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas.
arXiv Detail & Related papers (2023-10-16T14:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.