Evaluating the Performance of Large Language Models in Scientific Claim Detection and Classification
- URL: http://arxiv.org/abs/2412.16486v1
- Date: Sat, 21 Dec 2024 05:02:26 GMT
- Title: Evaluating the Performance of Large Language Models in Scientific Claim Detection and Classification
- Authors: Tanjim Bin Faruk,
- Abstract summary: This study evaluates the efficacy of Large Language Models (LLMs) as innovative solutions for mitigating misinformation on platforms like Twitter.
LLMs offer a pre-trained, adaptable approach that bypasses the extensive training and overfitting issues associated with traditional machine learning models.
We present a comparative analysis of LLMs' performance using a specialized dataset and propose a framework for their application in public health communication.
- Score: 0.0
- License:
- Abstract: The pervasive influence of social media during the COVID-19 pandemic has been a double-edged sword, enhancing communication while simultaneously propagating misinformation. This \textit{Digital Infodemic} has highlighted the urgent need for automated tools capable of discerning and disseminating factual content. This study evaluates the efficacy of Large Language Models (LLMs) as innovative solutions for mitigating misinformation on platforms like Twitter. LLMs, such as OpenAI's GPT and Meta's LLaMA, offer a pre-trained, adaptable approach that bypasses the extensive training and overfitting issues associated with traditional machine learning models. We assess the performance of LLMs in detecting and classifying COVID-19-related scientific claims, thus facilitating informed decision-making. Our findings indicate that LLMs have significant potential as automated fact-checking tools, though research in this domain is nascent and further exploration is required. We present a comparative analysis of LLMs' performance using a specialized dataset and propose a framework for their application in public health communication.
Related papers
- From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
Large Language Models (LLMs) have been employed for generating entirely new data instances and providing more cost-effective annotations.
This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques.
arXiv Detail & Related papers (2025-02-17T12:58:17Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated learning (FL) offers a compelling framework for training large language models (LLMs)
We focus on machine unlearning, a crucial aspect for complying with privacy regulations like the Right to be Forgotten.
We explore various strategies that enable effective unlearning, such as perturbation techniques, model decomposition, and incremental learning.
arXiv Detail & Related papers (2024-06-14T08:40:58Z) - LLM In-Context Recall is Prompt Dependent [0.0]
A model's ability to do this significantly influences its practical efficacy and dependability in real-world applications.
This study demonstrates that an LLM's recall capability is not only contingent upon the prompt's content but also may be compromised by biases in its training data.
arXiv Detail & Related papers (2024-04-13T01:13:59Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
We introduce EpiK-Eval, a novel question-answering benchmark tailored to evaluate LLMs' proficiency in formulating a coherent and consistent knowledge representation from segmented narratives.
We argue that these shortcomings stem from the intrinsic nature of prevailing training objectives.
The findings from this study offer insights for developing more robust and reliable LLMs.
arXiv Detail & Related papers (2023-10-23T21:15:54Z) - Automated Claim Matching with Large Language Models: Empowering
Fact-Checkers in the Fight Against Misinformation [11.323961700172175]
FACT-GPT is a framework designed to automate the claim matching phase of fact-checking using Large Language Models.
This framework identifies new social media content that either supports or contradicts claims previously debunked by fact-checkers.
We evaluated FACT-GPT on an extensive dataset of social media content related to public health.
arXiv Detail & Related papers (2023-10-13T16:21:07Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.