論文の概要: TELLER: A Trustworthy Framework for Explainable, Generalizable and Controllable Fake News Detection
- arxiv url: http://arxiv.org/abs/2402.07776v2
- Date: Tue, 28 May 2024 06:14:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 03:28:21.378078
- Title: TELLER: A Trustworthy Framework for Explainable, Generalizable and Controllable Fake News Detection
- Title(参考訳): TELLER: 説明可能な、一般化可能な、制御可能なフェイクニュース検出のための信頼できるフレームワーク
- Authors: Hui Liu, Wenya Wang, Haoru Li, Haoliang Li,
- Abstract要約: 本稿では,モデルの説明可能性,一般化性,制御性を重視した,信頼に値する偽ニュース検出のための新しいフレームワークを提案する。
これは認知と意思決定システムを統合するデュアルシステムフレームワークによって実現される。
提案手法の有効性と信頼性を実証し,4つのデータセットに対する総合的な評価結果を示す。
- 参考スコア(独自算出の注目度): 37.394874500480206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of fake news has emerged as a severe societal problem, raising significant interest from industry and academia. While existing deep-learning based methods have made progress in detecting fake news accurately, their reliability may be compromised caused by the non-transparent reasoning processes, poor generalization abilities and inherent risks of integration with large language models (LLMs). To address this challenge, we propose {\methodname}, a novel framework for trustworthy fake news detection that prioritizes explainability, generalizability and controllability of models. This is achieved via a dual-system framework that integrates cognition and decision systems, adhering to the principles above. The cognition system harnesses human expertise to generate logical predicates, which guide LLMs in generating human-readable logic atoms. Meanwhile, the decision system deduces generalizable logic rules to aggregate these atoms, enabling the identification of the truthfulness of the input news across diverse domains and enhancing transparency in the decision-making process. Finally, we present comprehensive evaluation results on four datasets, demonstrating the feasibility and trustworthiness of our proposed framework. Our implementation is available at \url{https://github.com/less-and-less-bugs/Trust_TELLER}.
- Abstract(参考訳): 偽ニュースの拡散は深刻な社会問題として現れ、産業や学界から大きな関心を集めている。
既存のディープラーニングに基づく手法では、偽ニュースの正確な検出が進んでいるが、その信頼性は、透明でない推論プロセス、一般化能力の低下、大型言語モデル(LLM)との統合の固有のリスクによって損なわれる可能性がある。
この課題に対処するために、モデルの説明可能性、一般化可能性、制御性を優先する信頼に値する偽ニュース検出のための新しいフレームワークである {\methodname} を提案する。
これは、認知と意思決定システムを統合するデュアルシステムフレームワークを通じて実現され、上記の原則に準拠している。
認知システムは人間の専門知識を活用して論理述語を生成する。
一方、決定システムは、これらの原子を集約する一般化可能な論理則を導出し、様々な領域にわたる入力ニュースの真偽を識別し、意思決定プロセスにおける透明性を高める。
最後に、4つのデータセットに対する総合的な評価結果を示し、提案フレームワークの有効性と信頼性を示す。
我々の実装は \url{https://github.com/less-and-less-bugs/Trust_TELLER} で利用可能です。
関連論文リスト
- On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [314.7991906491166]
Generative Foundation Models (GenFMs) がトランスフォーメーションツールとして登場した。
彼らの広く採用されていることは、次元の信頼に関する重要な懸念を提起する。
本稿では,3つの主要なコントリビューションを通じて,これらの課題に対処するための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2025-02-20T06:20:36Z) - Challenges and Innovations in LLM-Powered Fake News Detection: A Synthesis of Approaches and Future Directions [0.0]
偽ニュースの拡散は ソーシャルメディアのプラットフォームを通じて 一般大衆の信頼に 重大なリスクをもたらします
最近の研究には、マルチモーダルフレームワークにおける大規模言語モデルによる検出の強化が含まれている。
このレビューでは、ダイナミックなソーシャルメディアトレンド、リアルタイム、クロスプラットフォーム検出機能への適応性の重大なギャップがさらに明らかになった。
論文 参考訳(メタデータ) (2025-02-01T06:56:17Z) - Building Trustworthy AI: Transparent AI Systems via Large Language Models, Ontologies, and Logical Reasoning (TranspNet) [0.7420433640907689]
AIにおける透明性の欠如、特に医療や金融といった高度な分野での懸念が高まっているため、説明可能な信頼性の高いシステムの必要性が高まっている。
そこで本研究では,シンボルAIと大規模言語モデルを統合したTranspNetパイプラインを提案する。
論文 参考訳(メタデータ) (2024-11-13T09:40:37Z) - FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows" [74.7488607599921]
FaithEvalは、コンテキストシナリオにおける大規模言語モデル(LLM)の忠実度を評価するためのベンチマークである。
FaithEvalは4.9Kの高品質な問題で構成され、厳格な4段階のコンテキスト構築と検証フレームワークを通じて検証されている。
論文 参考訳(メタデータ) (2024-09-30T06:27:53Z) - DAAD: Dynamic Analysis and Adaptive Discriminator for Fake News Detection [23.17963985187272]
偽ニュース検出のための動的解析・適応識別器(DAAD)手法を提案する。
知識に基づく手法では,モンテカルロ木探索(MCTS)アルゴリズムを導入する。
意味に基づく手法では,4つの典型的な偽造パターンを定義する。
論文 参考訳(メタデータ) (2024-08-20T14:13:54Z) - Interpretable Concept-Based Memory Reasoning [12.562474638728194]
コンセプトベースのメモリリゾナー(CMR)は、人間に理解でき、検証可能なタスク予測プロセスを提供するために設計された新しいCBMである。
CMRは、最先端のCBMに対する精度-解釈可能性のトレードオフを向上し、基礎的な真実と整合した論理規則を発見し、規則の介入を可能にし、事前デプロイ検証を可能にする。
論文 参考訳(メタデータ) (2024-07-22T10:32:48Z) - Detect, Investigate, Judge and Determine: A Knowledge-guided Framework for Few-shot Fake News Detection [50.079690200471454]
Few-Shot Fake News Detection (FS-FND) は、極めて低リソースのシナリオにおいて、非正確なニュースを実際のニュースと区別することを目的としている。
ソーシャルメディア上でのフェイクニュースの拡散や有害な影響により、このタスクは注目を集めている。
本稿では,内外からLLMを増強するDual-perspective Knowledge-Guided Fake News Detection (DKFND)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-12T03:15:01Z) - Re-Search for The Truth: Multi-round Retrieval-augmented Large Language Models are Strong Fake News Detectors [38.75533934195315]
大きな言語モデル(LLM)はその顕著な推論と生成能力で知られている。
クレーム検証のための Web ソースからキーエビデンスを自動的に戦略的に抽出する,新たな LLM フレームワークについて紹介する。
我々の枠組みは十分な証拠の取得を保証し、性能を向上させる。
論文 参考訳(メタデータ) (2024-03-14T00:35:39Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。