論文の概要: Building Trustworthy AI: Transparent AI Systems via Large Language Models, Ontologies, and Logical Reasoning (TranspNet)
- arxiv url: http://arxiv.org/abs/2411.08469v1
- Date: Wed, 13 Nov 2024 09:40:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:10:39.329264
- Title: Building Trustworthy AI: Transparent AI Systems via Large Language Models, Ontologies, and Logical Reasoning (TranspNet)
- Title(参考訳): 信頼できるAIの構築: 大規模言語モデル、オントロジー、論理推論(TranspNet)による透明なAIシステム
- Authors: Fadi Al Machot, Martin Thomas Horsch, Habib Ullah,
- Abstract要約: AIにおける透明性の欠如、特に医療や金融といった高度な分野での懸念が高まっているため、説明可能な信頼性の高いシステムの必要性が高まっている。
そこで本研究では,シンボルAIと大規模言語モデルを統合したTranspNetパイプラインを提案する。
- 参考スコア(独自算出の注目度): 0.7420433640907689
- License:
- Abstract: Growing concerns over the lack of transparency in AI, particularly in high-stakes fields like healthcare and finance, drive the need for explainable and trustworthy systems. While Large Language Models (LLMs) perform exceptionally well in generating accurate outputs, their "black box" nature poses significant challenges to transparency and trust. To address this, the paper proposes the TranspNet pipeline, which integrates symbolic AI with LLMs. By leveraging domain expert knowledge, retrieval-augmented generation (RAG), and formal reasoning frameworks like Answer Set Programming (ASP), TranspNet enhances LLM outputs with structured reasoning and verification. This approach ensures that AI systems deliver not only accurate but also explainable and trustworthy results, meeting regulatory demands for transparency and accountability. TranspNet provides a comprehensive solution for developing AI systems that are reliable and interpretable, making it suitable for real-world applications where trust is critical.
- Abstract(参考訳): AIにおける透明性の欠如、特に医療や金融といった高度な分野での懸念が高まっているため、説明可能な信頼性の高いシステムの必要性が高まっている。
大きな言語モデル(LLM)は、正確なアウトプットを生成するのに非常によく機能しますが、その"ブラックボックス"の性質は透明性と信頼性に重大な課題をもたらします。
そこで本研究では,シンボルAIとLLMを統合したTranspNetパイプラインを提案する。
ドメインエキスパートの知識、検索強化生成(RAG)、Answer Set Programming(ASP)のような形式的推論フレームワークを活用することで、TranspNetは構造化された推論と検証によってLLM出力を拡張する。
このアプローチは、AIシステムが正確さだけでなく、説明可能な信頼性の高い結果を提供し、透明性と説明責任に関する規制要件を満たすことを保証する。
TranspNetは、信頼性と解釈可能なAIシステムを開発するための包括的なソリューションを提供する。
関連論文リスト
- Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、一貫性のない推論に苦戦している。
本研究では,LLM出力の信頼性と透明性を高めるフレームワークであるProof of Thoughtを紹介する。
主な貢献は、論理的整合性を高めるためのソート管理を備えた堅牢な型システム、事実的知識と推論的知識を明確に区別するための規則の明示である。
論文 参考訳(メタデータ) (2024-09-25T18:35:45Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
TRACE と呼ばれるコントラスト埋め込みを用いた新しいTRansformer-based Attribution フレームワークを提案する。
TRACEは情報源の属性を精度良く改善し,大規模言語モデルの信頼性と信頼性を高める貴重なツールであることを示す。
論文 参考訳(メタデータ) (2024-07-06T07:19:30Z) - TELLER: A Trustworthy Framework for Explainable, Generalizable and Controllable Fake News Detection [37.394874500480206]
本稿では,モデルの説明可能性,一般化性,制御性を重視した,信頼に値する偽ニュース検出のための新しいフレームワークを提案する。
これは認知と意思決定システムを統合するデュアルシステムフレームワークによって実現される。
提案手法の有効性と信頼性を実証し,4つのデータセットに対する総合的な評価結果を示す。
論文 参考訳(メタデータ) (2024-02-12T16:41:54Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
計算モデルにおける透過的な実装が実現可能かどうかを分析するための枠組みを導出する。
以上の結果から,Blum-Shub-Smale Machinesは,逆問題に対する信頼性の高い解法を確立できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-01-18T15:32:38Z) - Towards a Responsible AI Metrics Catalogue: A Collection of Metrics for
AI Accountability [28.67753149592534]
本研究は,包括的メトリクスカタログへの取り組みを導入することで,説明責任のギャップを埋めるものである。
我々のカタログは、手続き的整合性を支えるプロセスメトリクス、必要なツールやフレームワークを提供するリソースメトリクス、AIシステムのアウトプットを反映する製品メトリクスを記述しています。
論文 参考訳(メタデータ) (2023-11-22T04:43:16Z) - Path To Gain Functional Transparency In Artificial Intelligence With
Meaningful Explainability [0.0]
AIシステムがますます高度化するにつれて、透明性と説明可能性の確保が重要になる。
透明なシステムにおけるユーザ中心のコンプライアンス・バイ・デザイン透過性の設計を提案する。
AIシステムにおける透明性に関連する課題を包括的に理解することで、説明責任、信頼性、社会的価値に整合したAIシステムの開発を促進することを目指している。
論文 参考訳(メタデータ) (2023-10-13T04:25:30Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
表現工学の新たな領域(RepE)を特定し,特徴付ける
RepEは、神経細胞や回路ではなく、人口レベルの表現を解析の中心に置く。
これらの手法が、広範囲の安全関連問題に対してどのようにトラクションを提供するかを紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:59:07Z) - Users are the North Star for AI Transparency [111.5679109784322]
透明な人工知能システムを求める声が広まっているにもかかわらず、この用語は、厳密な政策の目的や具体的な研究ラインのオリエント化を表すために、多義的な意味に過大評価されている。
このことが起こる理由の1つは、AI透明性の明確な理想が、この仕事の体で実現されないことである。
透明性はユーザ中心で、ユーザ指向で、誠実です。
論文 参考訳(メタデータ) (2023-03-09T18:53:29Z) - Explainable AI does not provide the explanations end-users are asking
for [0.0]
我々は、XAIのデプロイメントにおける制限について議論し、厳格な検証とともに透明性がAIシステムへの信頼を得るのに適していると結論づける。
XAI技術は、複雑なモデルや関連する予測を理解し、信頼を得ることを目標として、多くのAIシステムのユーザによって頻繁に要求される。
論文 参考訳(メタデータ) (2023-01-25T10:34:38Z) - Dimensions of Transparency in NLP Applications [64.16277166331298]
aiシステムに関する記述とコミュニケーションに関する幅広い透明性が望ましいと考えられている。
以前の研究は、システムの透明性向上とユーザの混乱の間にトレードオフが存在することを示唆している。
論文 参考訳(メタデータ) (2021-01-02T11:46:17Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。