論文の概要: From Uncertainty to Precision: Enhancing Binary Classifier Performance
through Calibration
- arxiv url: http://arxiv.org/abs/2402.07790v1
- Date: Mon, 12 Feb 2024 16:55:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 13:30:51.174450
- Title: From Uncertainty to Precision: Enhancing Binary Classifier Performance
through Calibration
- Title(参考訳): 不確実性から精度:校正によるバイナリ分類性能の向上
- Authors: Agathe Fernandes Machado, Arthur Charpentier, Emmanuel Flachaire, Ewen
Gallic, Fran\c{c}ois Hu
- Abstract要約: モデル予測スコアはイベント確率として一般的に見なされるので、キャリブレーションは正確な解釈に不可欠である。
歪み評価のための様々なキャリブレーション尺度の感度を解析し,改良された指標であるローカルスコアを導入する。
これらの知見をランダムフォレスト分類器と回帰器を用いて実世界のシナリオに適用し、キャリブレーションを同時に測定しながら信用デフォルトを予測する。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The assessment of binary classifier performance traditionally centers on
discriminative ability using metrics, such as accuracy. However, these metrics
often disregard the model's inherent uncertainty, especially when dealing with
sensitive decision-making domains, such as finance or healthcare. Given that
model-predicted scores are commonly seen as event probabilities, calibration is
crucial for accurate interpretation. In our study, we analyze the sensitivity
of various calibration measures to score distortions and introduce a refined
metric, the Local Calibration Score. Comparing recalibration methods, we
advocate for local regressions, emphasizing their dual role as effective
recalibration tools and facilitators of smoother visualizations. We apply these
findings in a real-world scenario using Random Forest classifier and regressor
to predict credit default while simultaneously measuring calibration during
performance optimization.
- Abstract(参考訳): バイナリ分類器の性能評価は、伝統的に精度などのメトリクスを用いた識別能力に焦点を当てている。
しかしながら、これらの指標は、特に金融や医療といった繊細な意思決定ドメインを扱う場合、モデル固有の不確実性を無視していることが多い。
モデル予測スコアはイベント確率と見なされるので、正確な解釈には校正が不可欠である。
本研究では,歪み評価のための様々な校正尺度の感度を解析し,局所校正スコア(Local Calibration Score)を導入した。
再校正手法を比較することで,局所回帰を提唱し,効果的な再校正ツールとしての2つの役割と,よりスムーズな可視化のファシリテータを強調する。
これらの知見をランダムフォレスト分類器と回帰器を用いて実世界のシナリオに適用し、性能最適化時のキャリブレーションを同時に測定する。
関連論文リスト
- Optimizing Estimators of Squared Calibration Errors in Classification [2.3020018305241337]
本稿では,2乗キャリブレーション誤差の推定器の比較と最適化を可能にする平均二乗誤差に基づくリスクを提案する。
キャリブレーション誤差を推定する際のトレーニングバリデーションテストパイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-09T15:58:06Z) - Towards Certification of Uncertainty Calibration under Adversarial Attacks [96.48317453951418]
攻撃はキャリブレーションを著しく損なう可能性を示し, 対向的摂動下でのキャリブレーションにおける最悪のキャリブレーション境界として認定キャリブレーションを提案する。
我々は,新しいキャリブレーション攻撃を提案し,テクスタディバーショナルキャリブレーショントレーニングによりモデルキャリブレーションを改善する方法を示す。
論文 参考訳(メタデータ) (2024-05-22T18:52:09Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
セマンティックセグメンテーションキャリブレーションの問題について検討する。
モデルキャパシティ、作物サイズ、マルチスケールテスト、予測精度はキャリブレーションに影響を及ぼす。
我々は、単純で統一的で効果的なアプローチ、すなわち選択的スケーリングを提案する。
論文 参考訳(メタデータ) (2022-12-22T22:05:16Z) - What is Your Metric Telling You? Evaluating Classifier Calibration under
Context-Specific Definitions of Reliability [6.510061176722249]
我々は、キャリブレーション誤差を正確に測定する、より表現力のあるメトリクスを開発する必要があると論じる。
信頼性の異なる定義の下でキャリブレーション誤差を測定するために,期待誤差(ECE)の一般化を用いる。
1) 予測クラスのみに焦点をあてたECEの定義は,信頼性の実際的有用な定義の選択の下でキャリブレーション誤差を正確に測定することができず,2) 多くの一般的なキャリブレーション手法は,ECEメトリクス全体でキャリブレーション性能を均一に改善することができない。
論文 参考訳(メタデータ) (2022-05-23T16:45:02Z) - Better Uncertainty Calibration via Proper Scores for Classification and
Beyond [15.981380319863527]
各校正誤差を適切なスコアに関連付ける適切な校正誤差の枠組みを導入する。
この関係は、モデルのキャリブレーションの改善を確実に定量化するために利用することができる。
論文 参考訳(メタデータ) (2022-03-15T12:46:08Z) - Estimating Expected Calibration Errors [1.52292571922932]
確率論的予測の不確実性は、モデルが人間の意思決定をサポートするために使用される場合、重要な問題である。
ほとんどのモデルは本質的に十分に校正されていないため、決定スコアは後続確率と一致しない。
我々は、$ECE$推定器の品質を定量化するための実証的な手順を構築し、それを使用して、異なる設定で実際にどの推定器を使用するべきかを決定する。
論文 参考訳(メタデータ) (2021-09-08T08:00:23Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
完全大域キャリブレーションと完全個別化キャリブレーションのギャップにまたがる細粒度キャリブレーション指標を提案する。
次に,局所再校正法であるLoReを導入し,既存の校正法よりもLCEを改善する。
論文 参考訳(メタデータ) (2021-02-22T07:22:12Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。