論文の概要: Optimizing Estimators of Squared Calibration Errors in Classification
- arxiv url: http://arxiv.org/abs/2410.07014v1
- Date: Wed, 9 Oct 2024 15:58:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 23:07:19.404354
- Title: Optimizing Estimators of Squared Calibration Errors in Classification
- Title(参考訳): 正方形校正誤差の分類における最適推定器
- Authors: Sebastian G. Gruber, Francis Bach,
- Abstract要約: 本稿では,2乗キャリブレーション誤差の推定器の比較と最適化を可能にする平均二乗誤差に基づくリスクを提案する。
キャリブレーション誤差を推定する際のトレーニングバリデーションテストパイプラインを提案する。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a mean-squared error-based risk that enables the comparison and optimization of estimators of squared calibration errors in practical settings. Improving the calibration of classifiers is crucial for enhancing the trustworthiness and interpretability of machine learning models, especially in sensitive decision-making scenarios. Although various calibration (error) estimators exist in the current literature, there is a lack of guidance on selecting the appropriate estimator and tuning its hyperparameters. By leveraging the bilinear structure of squared calibration errors, we reformulate calibration estimation as a regression problem with independent and identically distributed (i.i.d.) input pairs. This reformulation allows us to quantify the performance of different estimators even for the most challenging calibration criterion, known as canonical calibration. Our approach advocates for a training-validation-testing pipeline when estimating a calibration error on an evaluation dataset. We demonstrate the effectiveness of our pipeline by optimizing existing calibration estimators and comparing them with novel kernel ridge regression-based estimators on standard image classification tasks.
- Abstract(参考訳): 本研究では,2乗キャリブレーション誤差の予測器の比較と最適化を可能にする平均二乗誤差に基づくリスクを提案する。
分類器の校正を改善することは、特に繊細な意思決定シナリオにおいて、機械学習モデルの信頼性と解釈可能性を高めるために重要である。
現在の文献には様々なキャリブレーション(エラー)推定器が存在するが、適切な推定器を選択し、そのハイパーパラメータをチューニングするためのガイダンスがない。
正方形キャリブレーション誤差の双線型構造を利用することで、キャリブレーション推定を独立かつ同一に分布する入力対(すなわちd)の回帰問題として再定式化する。
この改定により、カノニカルキャリブレーション(canonical calibration)として知られる最も難しいキャリブレーション基準であっても、異なる推定器の性能を定量化することができる。
本手法は,評価データセットの校正誤差を推定する際のトレーニングバリデーションテストパイプラインを提案する。
我々は,既存のキャリブレーション推定器を最適化し,新しいカーネルリッジ回帰に基づく推定器と比較することにより,パイプラインの有効性を実証する。
関連論文リスト
- Towards Certification of Uncertainty Calibration under Adversarial Attacks [96.48317453951418]
攻撃はキャリブレーションを著しく損なう可能性を示し, 対向的摂動下でのキャリブレーションにおける最悪のキャリブレーション境界として認定キャリブレーションを提案する。
我々は,新しいキャリブレーション攻撃を提案し,テクスタディバーショナルキャリブレーショントレーニングによりモデルキャリブレーションを改善する方法を示す。
論文 参考訳(メタデータ) (2024-05-22T18:52:09Z) - From Uncertainty to Precision: Enhancing Binary Classifier Performance
through Calibration [0.3495246564946556]
モデル予測スコアはイベント確率として一般的に見なされるので、キャリブレーションは正確な解釈に不可欠である。
歪み評価のための様々なキャリブレーション尺度の感度を解析し,改良された指標であるローカルスコアを導入する。
これらの知見をランダムフォレスト分類器と回帰器を用いて実世界のシナリオに適用し、キャリブレーションを同時に測定しながら信用デフォルトを予測する。
論文 参考訳(メタデータ) (2024-02-12T16:55:19Z) - Consistent and Asymptotically Unbiased Estimation of Proper Calibration
Errors [23.819464242327257]
本稿では,全ての適切な校正誤差と精錬項を一貫した推定を可能にする手法を提案する。
ニューラルネットワークにおける情報単調性を意味するf-分節と精製の関係を実証する。
本実験は,提案した推定器のクレーム特性を検証し,特に関心のキャリブレーション誤差によって,ポストホックキャリブレーション法の選択が決定されるべきであることを示唆した。
論文 参考訳(メタデータ) (2023-12-14T01:20:08Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Calibration of Neural Networks [77.34726150561087]
本稿では,ニューラルネットワークの文脈における信頼性校正問題について調査する。
我々は,問題文,キャリブレーション定義,評価に対する異なるアプローチについて分析する。
実験実験では、様々なデータセットとモデルをカバーし、異なる基準に従って校正方法を比較する。
論文 参考訳(メタデータ) (2023-03-19T20:27:51Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Better Uncertainty Calibration via Proper Scores for Classification and
Beyond [15.981380319863527]
各校正誤差を適切なスコアに関連付ける適切な校正誤差の枠組みを導入する。
この関係は、モデルのキャリブレーションの改善を確実に定量化するために利用することができる。
論文 参考訳(メタデータ) (2022-03-15T12:46:08Z) - Estimating Expected Calibration Errors [1.52292571922932]
確率論的予測の不確実性は、モデルが人間の意思決定をサポートするために使用される場合、重要な問題である。
ほとんどのモデルは本質的に十分に校正されていないため、決定スコアは後続確率と一致しない。
我々は、$ECE$推定器の品質を定量化するための実証的な手順を構築し、それを使用して、異なる設定で実際にどの推定器を使用するべきかを決定する。
論文 参考訳(メタデータ) (2021-09-08T08:00:23Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。