論文の概要: Mercury: A Code Efficiency Benchmark for LLM Code Synthesis
- arxiv url: http://arxiv.org/abs/2402.07844v3
- Date: Thu, 6 Jun 2024 09:42:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 23:40:31.353589
- Title: Mercury: A Code Efficiency Benchmark for LLM Code Synthesis
- Title(参考訳): Mercury: LLMコード合成のためのコード効率ベンチマーク
- Authors: Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu, See-Kiong Ng,
- Abstract要約: 我々は、Large Language Models for Code (Code LLMs)の最初のコード効率ベンチマークであるMercuryを提示する。
1,889のPythonタスクで構成され、それぞれに現実の効率のベースラインとして機能する適切なソリューションが伴っている。
そこで我々は,機能的正当性とコード効率を同時に反映する,実行時毎のパススコアを計算する新たな指標Beyondを導入する。
- 参考スコア(独自算出の注目度): 41.51235610016959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Amidst the recent strides in evaluating Large Language Models for Code (Code LLMs), existing benchmarks have mainly focused on the functional correctness of generated code, neglecting the importance of their computational efficiency. To fill the gap, we present Mercury, the first code efficiency benchmark for Code LLMs. It comprises 1,889 Python tasks, each accompanied by adequate solutions that serve as real-world efficiency baselines, enabling a comprehensive analysis of the runtime distribution. Based on the distribution, we introduce a new metric Beyond, which computes a runtime-percentile-weighted Pass score to reflect functional correctness and code efficiency simultaneously. On Mercury, leading Code LLMs can achieve 65% on Pass, while less than 50% on Beyond. Given that an ideal Beyond score would be aligned with the Pass score, it indicates that while Code LLMs exhibit impressive capabilities in generating functionally correct code, there remains a notable gap in their efficiency. Finally, our empirical experiments reveal that Direct Preference Optimization (DPO) serves as a robust baseline for enhancing code efficiency compared with Supervised Fine Tuning (SFT), which paves a promising avenue for future exploration of efficient code generation. Our code and data are available on GitHub: https://github.com/Elfsong/Mercury.
- Abstract(参考訳): コードのための大規模言語モデル(Code LLM)を評価する最近の取り組みの中で、既存のベンチマークは主に生成されたコードの機能的正しさに焦点を合わせており、その計算効率の重要性を無視している。
このギャップを埋めるために、コードLLMの最初のコード効率ベンチマークであるMercuryを提示する。
1,889のPythonタスクで構成され、それぞれに現実の効率のベースラインとして機能する適切なソリューションが伴い、ランタイムディストリビューションの包括的な分析を可能にする。
この分布に基づいて,関数の正しさとコード効率を同時に反映するために,実行時毎のパススコアを算出する新たな測度Beyondを導入する。
Mercuryでは、コードLLMがPassで65%、Beyondで50%以下を達成できる。
理想のBeyondスコアがPassスコアと一致していることを考えると、Code LLMは機能的に正しいコードを生成する素晴らしい能力を示すが、その効率に顕著なギャップがあることを示している。
最後に、我々の実証実験により、DPO(Direct Preference Optimization)が、Supervised Fine Tuning(SFT)と比較して、コード効率を高めるための堅牢なベースラインとして機能していることが判明した。
私たちのコードとデータはGitHubで入手可能です。
関連論文リスト
- ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness? [12.862825053595934]
ECCOは、自然言語(NL)ベースのコード生成と履歴ベースのコード編集という、2つのパラダイムを通じてプログラム効率を評価するためのベンチマークである。
実行情報の追加は機能的正確性を維持するのによく役立ち、NLフィードバックは効率を向上する。
論文 参考訳(メタデータ) (2024-07-19T05:47:40Z) - How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark [39.13045037676502]
大規模言語モデル(LLM)の開発は、プログラム合成のフロンティアを著しく押し上げている。
ほとんどの評価フレームワークは生成したコードの(機能的な)正しさに重点を置いています。
我々は,LLMの効率的なコード生成能力を評価するための厳格で高水準なベンチマークENAMELを開発した。
論文 参考訳(メタデータ) (2024-06-10T04:19:20Z) - On Evaluating the Efficiency of Source Code Generated by LLMs [31.8121544062256]
より効率的なコードは、LCM支援プログラミングで完了したプログラムやソフトウェアの性能と実行効率を向上させる。
まず,HumanEval と MBPP の2つのベンチマークで LLM が生成したコードの有効性を評価する。
そして,オンライン審査プラットフォームLeetCodeから,より難しい評価を行うために,一連のプログラミング問題を選択する。
論文 参考訳(メタデータ) (2024-04-09T05:59:39Z) - Reasoning Runtime Behavior of a Program with LLM: How Far Are We? [25.451857140926943]
コードのための大規模な言語モデル(LLM)は、強力なコード理解と生成能力を示している。
コード推論は、コードLLMの最も重要な能力の1つである。
本稿では,プログラム実行によるLLMのコード推論能力と一貫性を評価するためのフレームワークであるRevalを提案する。
論文 参考訳(メタデータ) (2024-03-25T05:37:16Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Assured LLM-Based Software Engineering [51.003878077888686]
この記事では,2024年4月15日にポルトガルのリスボンで開催された International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering で,Mark Harman 氏による基調講演の内容の概要を紹介する。
論文 参考訳(メタデータ) (2024-02-06T20:38:46Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of
Large Language Models for Code Generation [20.45045253933097]
LLM合成コードの機能的正しさを厳格に評価するコード合成評価フレームワークであるEvalPlusを提案する。
EvalPlusは、自動テスト入力ジェネレータによって新たに生成された大量のテストケースで、所定の評価データセットを拡張する。
我々は、HumanEval+が、これまで検出されていなかった大量の間違ったコードをキャッチできることを示します。
論文 参考訳(メタデータ) (2023-05-02T05:46:48Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。