Online Differentially Private Synthetic Data Generation
- URL: http://arxiv.org/abs/2402.08012v3
- Date: Wed, 23 Oct 2024 02:07:09 GMT
- Title: Online Differentially Private Synthetic Data Generation
- Authors: Yiyun He, Roman Vershynin, Yizhe Zhu,
- Abstract summary: We develop an online algorithm that generates a differentially private synthetic dataset at each time $t$.
This algorithm achieves a near-optimal accuracy bound of $O(log(t)t-1/d)$ for $dgeq 2$ and $O(log4.5(t)t-1)$ for $d=1$ in the 1-Wasserstein distance.
- Score: 10.177542186664503
- License:
- Abstract: We present a polynomial-time algorithm for online differentially private synthetic data generation. For a data stream within the hypercube $[0,1]^d$ and an infinite time horizon, we develop an online algorithm that generates a differentially private synthetic dataset at each time $t$. This algorithm achieves a near-optimal accuracy bound of $O(\log(t)t^{-1/d})$ for $d\geq 2$ and $O(\log^{4.5}(t)t^{-1})$ for $d=1$ in the 1-Wasserstein distance. This result extends the previous work on the continual release model for counting queries to Lipschitz queries. Compared to the offline case, where the entire dataset is available at once, our approach requires only an extra polylog factor in the accuracy bound.
Related papers
- Statistical-Computational Trade-offs for Density Estimation [60.81548752871115]
We show that for a broad class of data structures their bounds cannot be significantly improved.
This is a novel emphstatistical-computational trade-off for density estimation.
arXiv Detail & Related papers (2024-10-30T15:03:33Z) - Fast John Ellipsoid Computation with Differential Privacy Optimization [34.437362489150246]
We present the first differentially private algorithm for fast John ellipsoid computation.
Our method integrates noise perturbation with sketching and leverage score sampling to achieve both efficiency and privacy.
arXiv Detail & Related papers (2024-08-12T03:47:55Z) - Private Stochastic Convex Optimization with Heavy Tails: Near-Optimality from Simple Reductions [19.008521454738425]
We study the problem of differentially private convex optimization (DP-SCO) with heavy-tailed gradients, where we assume a $ktextth$-moment bound on the Lipschitz constants of sample functions rather than a uniform bound.
We propose a new reduction-based approach that enables us to obtain the first optimal rates (up to logarithmic factors) in the heavy-tailed setting, achieving error $Gcdot frac 1 sqrt n + G_k cdot (fracsqrt dnepsilon)1
arXiv Detail & Related papers (2024-06-04T21:26:29Z) - Turnstile $\ell_p$ leverage score sampling with applications [56.403488578703865]
We develop a novel algorithm for sampling rows $a_i$ of a matrix $AinmathbbRntimes d$, proportional to their $ell_p$ norm, when $A$ is presented in a turnstile data stream.
Our algorithm not only returns the set of sampled row indexes, it also returns slightly perturbed rows $tildea_i approx a_i$, and approximates their sampling probabilities up to $varepsilon$ relative error.
For logistic regression, our framework yields the first algorithm that achieves a $
arXiv Detail & Related papers (2024-06-01T07:33:41Z) - Differentially Private Clustering in Data Streams [65.78882209673885]
We present a differentially private streaming clustering framework which only requires an offline DP coreset or clustering algorithm as a blackbox.
Our framework is also differentially private under the continual release setting, i.e., the union of outputs of our algorithms at every timestamp is always differentially private.
arXiv Detail & Related papers (2023-07-14T16:11:22Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Efficient Mean Estimation with Pure Differential Privacy via a
Sum-of-Squares Exponential Mechanism [16.996435043565594]
We give the first-time algorithm to estimate the mean of a $d$-positive probability distribution with covariance from $tildeO(d)$ independent samples subject to pure differential privacy.
Our main technique is a new approach to use the powerful Sum of Squares method (SoS) to design differentially private algorithms.
arXiv Detail & Related papers (2021-11-25T09:31:15Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - A Deterministic Streaming Sketch for Ridge Regression [15.256452294422294]
We provide a deterministic space-efficient algorithm for estimating ridge regression.
This is the first $o(d2)$ space deterministic streaming algorithm with guaranteed solution error.
In comparisons to randomized sketching algorithms on synthetic and real-world datasets, our algorithm has less empirical error using less space and similar time.
arXiv Detail & Related papers (2020-02-05T22:08:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.