論文の概要: Nearest Neighbour Score Estimators for Diffusion Generative Models
- arxiv url: http://arxiv.org/abs/2402.08018v1
- Date: Mon, 12 Feb 2024 19:27:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 17:40:50.327658
- Title: Nearest Neighbour Score Estimators for Diffusion Generative Models
- Title(参考訳): 拡散生成モデルにおける最近近傍スコア推定器
- Authors: Matthew Niedoba, Dylan Green, Saeid Naderiparizi, Vasileios Lioutas,
Jonathan Wilder Lavington, Xiaoxuan Liang, Yunpeng Liu, Ke Zhang, Setareh
Dabiri, Adam \'Scibior, Berend Zwartsenberg, Frank Wood
- Abstract要約: トレーニングセットから複数のサンプルを抽出し,推定値の分散を劇的に低減する新しい近傍スコア関数推定器を提案する。
拡散モデルでは,確率フローODE統合のための学習ネットワークを推定器で置き換えることができ,将来的な研究の新たな道が開かれる。
- 参考スコア(独自算出の注目度): 17.432400614303585
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Score function estimation is the cornerstone of both training and sampling
from diffusion generative models. Despite this fact, the most commonly used
estimators are either biased neural network approximations or high variance
Monte Carlo estimators based on the conditional score. We introduce a novel
nearest neighbour score function estimator which utilizes multiple samples from
the training set to dramatically decrease estimator variance. We leverage our
low variance estimator in two compelling applications. Training consistency
models with our estimator, we report a significant increase in both convergence
speed and sample quality. In diffusion models, we show that our estimator can
replace a learned network for probability-flow ODE integration, opening
promising new avenues of future research.
- Abstract(参考訳): スコア関数推定は拡散生成モデルからのトレーニングとサンプリングの両方の基礎となる。
この事実にもかかわらず、最もよく使われる推定器は、バイアス付きニューラルネットワーク近似または条件スコアに基づく高分散モンテカルロ推定器である。
トレーニングセットから複数のサンプルを用いて推定値の分散を劇的に低減する新しい近接スコア関数推定器を提案する。
低分散推定器を2つの説得力のある応用に活用する。
推定器による整合性モデルの訓練を行い, 収束速度と試料品質の両面で有意な増加が報告された。
拡散モデルでは,確率フローODE統合のための学習ネットワークを置き換えることが可能であり,将来的な研究の新たな道が開かれる。
関連論文リスト
- Reward-Directed Score-Based Diffusion Models via q-Learning [8.725446812770791]
生成AIのための連続時間スコアベース拡散モデルのトレーニングのための新しい強化学習(RL)法を提案する。
我々の定式化は、ノイズ摂動データ分布の未知のスコア関数に対する事前学習モデルを含まない。
論文 参考訳(メタデータ) (2024-09-07T13:55:45Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
我々は,強い対数対数データの下での拡散に基づく生成モデルの収束挙動を理論的に保証する。
スコア推定に使用される関数のクラスは、スコア関数上のリプシッツネスの仮定を避けるために、リプシッツ連続関数からなる。
この手法はサンプリングアルゴリズムにおいて最もよく知られた収束率をもたらす。
論文 参考訳(メタデータ) (2023-11-22T18:40:45Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
本稿では,崩壊サンプルを用いたベイズモデル平均化を行う新しい崩壊予測手法を提案する。
崩壊したサンプルは、近似後部から引き出された数え切れないほど多くのモデルを表す。
提案手法は, スケーラビリティと精度のバランスをとる。
論文 参考訳(メタデータ) (2023-06-16T08:34:42Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - A Statistical Model for Predicting Generalization in Few-Shot
Classification [6.158812834002346]
一般化誤差を予測するために,特徴分布のガウスモデルを導入する。
提案手法は, 相互検証戦略の離脱など, 代替案よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-13T10:21:15Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
PLモデルにおいて,より標本効率の高い予測値を生成するための新しい手法を開発した。
Amazon MusicのリアルなレコメンデーションデータとYahooの学習からランクへの挑戦を理論的にも実証的にも使用しています。
論文 参考訳(メタデータ) (2022-05-12T11:15:47Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - DEMI: Discriminative Estimator of Mutual Information [5.248805627195347]
連続確率変数間の相互情報を推定することは、高次元データにとってしばしば難解で困難である。
近年の進歩は、相互情報の変動的下界を最適化するためにニューラルネットワークを活用している。
提案手法は,データサンプルペアが結合分布から引き出される確率を提供する分類器の訓練に基づく。
論文 参考訳(メタデータ) (2020-10-05T04:19:27Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
二進的アクティベーションや二進的重みを持つニューラルネットワークでは、勾配降下によるトレーニングは複雑である。
そこで本研究では,サンプリングと解析近似を併用した新しい推定法を提案する。
勾配推定において高い精度を示し、深部畳み込みモデルにおいてより安定かつ優れた訓練を行うことを示す。
論文 参考訳(メタデータ) (2020-06-04T21:51:21Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
我々は、置換のないサンプリングに基づいて、離散確率変数に対する期待値の偏りのない推定器を導出する。
推定器は3つの異なる推定器のラオ・ブラックウェル化として導出可能であることを示す。
論文 参考訳(メタデータ) (2020-02-14T14:15:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。