論文の概要: BASE TTS: Lessons from building a billion-parameter Text-to-Speech model
on 100K hours of data
- arxiv url: http://arxiv.org/abs/2402.08093v2
- Date: Thu, 15 Feb 2024 18:57:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 12:17:59.073408
- Title: BASE TTS: Lessons from building a billion-parameter Text-to-Speech model
on 100K hours of data
- Title(参考訳): BASE TTS:100K時間データを用いた10億パラメータテキスト音声モデルの構築から学んだこと
- Authors: Mateusz {\L}ajszczak, Guillermo C\'ambara, Yang Li, Fatih Beyhan,
Arent van Korlaar, Fan Yang, Arnaud Joly, \'Alvaro Mart\'in-Cortinas, Ammar
Abbas, Adam Michalski, Alexis Moinet, Sri Karlapati, Ewa Muszy\'nska, Haohan
Guo, Bartosz Putrycz, Soledad L\'opez Gambino, Kayeon Yoo, Elena Sokolova,
Thomas Drugman
- Abstract要約: BASE TTSは、これまでで最大のTSモデルであり、パブリックドメインの音声データ100K時間で訓練されている。
10K以上の時間と500M以上のパラメータで構築されたBASE TTSの変種が、テキストに複雑な文に自然な韻律を呈示し始めることを示す。
- 参考スコア(独自算出の注目度): 15.447206120523356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a text-to-speech (TTS) model called BASE TTS, which stands for
$\textbf{B}$ig $\textbf{A}$daptive $\textbf{S}$treamable TTS with
$\textbf{E}$mergent abilities. BASE TTS is the largest TTS model to-date,
trained on 100K hours of public domain speech data, achieving a new
state-of-the-art in speech naturalness. It deploys a 1-billion-parameter
autoregressive Transformer that converts raw texts into discrete codes
("speechcodes") followed by a convolution-based decoder which converts these
speechcodes into waveforms in an incremental, streamable manner. Further, our
speechcodes are built using a novel speech tokenization technique that features
speaker ID disentanglement and compression with byte-pair encoding. Echoing the
widely-reported "emergent abilities" of large language models when trained on
increasing volume of data, we show that BASE TTS variants built with 10K+ hours
and 500M+ parameters begin to demonstrate natural prosody on textually complex
sentences. We design and share a specialized dataset to measure these emergent
abilities for text-to-speech. We showcase state-of-the-art naturalness of BASE
TTS by evaluating against baselines that include publicly available large-scale
text-to-speech systems: YourTTS, Bark and TortoiseTTS. Audio samples generated
by the model can be heard at https://amazon-ltts-paper.com/.
- Abstract(参考訳): これは$\textbf{b}$ig$\textbf{a}$daptive$\textbf{s}$treamable ttsの略で、$\textbf{e}$mergent能力を持つ。
BASE TTSは、これまでで最大のTSモデルであり、パブリックドメインの音声データ100K時間で訓練され、音声の自然性において新たな最先端を達成する。
原文を離散符号("speechcodes")に変換し、さらに畳み込みベースのデコーダを使用してこれらの音声コードをインクリメンタルで流線型に波形に変換する1億パラメータの自己回帰トランスフォーマーをデプロイする。
さらに,話者IDのアンタングル化とバイトペア符号化による圧縮を特徴とする,新しい音声トークン化手法を用いて音声符号化を行う。
データ量の増加を訓練する際、大規模言語モデルの「創発的能力」が広く報告されているのを反映して、10K以上の時間と500M以上のパラメータで構築されたBASE TTSの変種が、テキストに複雑な文に自然な韻律を呈示し始めた。
テキストから音声への創発的能力を測定するために,特殊なデータセットを設計し,共有する。
本稿では,YourTTS,Bark,TortoiseTTSなどの大規模音声合成システムを含むベースラインに対する評価により,BASE TTSの最先端の自然性を示す。
モデルによって生成されたオーディオサンプルはhttps://amazon-ltts-paper.com/で確認できる。
関連論文リスト
- Improving Audio Codec-based Zero-Shot Text-to-Speech Synthesis with Multi-Modal Context and Large Language Model [11.62674351793]
複数の拡張を伴ってコンテキスト特徴を適応する新しい音声ベースのTSモデルを提案する。
Qformerの成功に触発されて,マルチモーダルなコンテキスト強化Qformerを提案する。
提案手法は,様々な状況のTSシナリオにおいて,ベースラインよりも優れる。
論文 参考訳(メタデータ) (2024-06-06T03:06:45Z) - TextrolSpeech: A Text Style Control Speech Corpus With Codec Language
Text-to-Speech Models [51.529485094900934]
リッチテキスト属性を付加した最初の大規模音声感情データセットであるTextrolSpeechを提案する。
本稿では,GPTモデルを利用した多段階プロンプトプログラミング手法を提案する。
そこで我々は,より多様なスタイルで音声を生成する必要性に対処するため,Salleと呼ばれる効率的なアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-08-28T09:06:32Z) - Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive
Bias [71.94109664001952]
Mega-TTSは、大規模な野生データで訓練された新しいゼロショットTSシステムである。
Mega-TTS はゼロショット TTS 音声編集や言語間 TTS タスクにおいて最先端 TTS システムを超えていることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:54:49Z) - Code-Switching Text Generation and Injection in Mandarin-English ASR [57.57570417273262]
業界で広く使われているストリーミングモデルTransformer-Transducer(T-T)の性能向上のためのテキスト生成とインジェクションについて検討する。
まず、コードスイッチングテキストデータを生成し、テキスト-to-Speech(TTS)変換または暗黙的に音声とテキストの潜在空間を結び付けることによって、T-Tモデルに生成されたテキストを明示的に注入する戦略を提案する。
実際のマンダリン・イングリッシュ音声の1,800時間を含むデータセットを用いて訓練したT-Tモデルの実験結果から,生成したコードスイッチングテキストを注入する手法により,T-Tモデルの性能が著しく向上することが示された。
論文 参考訳(メタデータ) (2023-03-20T09:13:27Z) - Learning to Speak from Text: Zero-Shot Multilingual Text-to-Speech with
Unsupervised Text Pretraining [65.30528567491984]
本稿では,対象言語に対するテキストのみのデータを用いたゼロショット多言語TS法を提案する。
テキストのみのデータを使用することで、低リソース言語向けのTSシステムの開発が可能になる。
評価の結果,文字誤り率が12%未満のゼロショットTSは,見当たらない言語では高い知能性を示した。
論文 参考訳(メタデータ) (2023-01-30T00:53:50Z) - Virtuoso: Massive Multilingual Speech-Text Joint Semi-Supervised
Learning for Text-To-Speech [37.942466944970704]
本稿では,テキスト音声合成(TTS)モデルのための多言語共同学習フレームワークであるVirtuosoを提案する。
様々な音声およびテキストデータからTSモデルをトレーニングするために、教師なし(TTSおよびASRデータ)と教師なし(非教師なし)のデータセットを扱うように、異なるトレーニングスキームが設計されている。
実験により、Virtuosoで訓練された多言語TSモデルは、見かけの言語におけるベースラインモデルよりも、自然性や知性に優れることが示された。
論文 参考訳(メタデータ) (2022-10-27T14:09:48Z) - SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder
Based Speech-Text Pre-training [106.34112664893622]
本稿では,音声エンコーダとテキストデコーダの表現を共有単位エンコーダに接続する,統一モーダル音声単位テキスト事前学習モデルであるSpeechUTを提案する。
提案するSpeechUTは,自動音声認識(ASR)と音声翻訳(ST)タスクに基づいて微調整および評価を行う。
論文 参考訳(メタデータ) (2022-10-07T17:57:45Z) - Transfer Learning Framework for Low-Resource Text-to-Speech using a
Large-Scale Unlabeled Speech Corpus [10.158584616360669]
テキスト音声(TTS)モデルのトレーニングには,大規模テキストラベル付き音声コーパスが必要となる。
本稿では、事前学習に大量のラベルなし音声データセットを利用するTSの転送学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T11:26:56Z) - AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [115.38309338462588]
AdaSpeech 2 は、未転写音声データのみを適応に利用する適応型 TTS システムである。
具体的には,よく訓練されたttsモデルにmel-spectrogramエンコーダを導入し,音声再構成を行う。
適応では,ttsデコーダのみを微調整し,未書き起こし音声データを用いて音声再構成を行う。
論文 参考訳(メタデータ) (2021-04-20T01:53:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。