論文の概要: Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens
- arxiv url: http://arxiv.org/abs/2503.01710v1
- Date: Mon, 03 Mar 2025 16:23:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:14:32.030639
- Title: Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens
- Title(参考訳): Spark-TTS:シングルストリームデカップリング音声トークンを用いたLLMに基づく効率的なテキスト音声合成モデル
- Authors: Xinsheng Wang, Mingqi Jiang, Ziyang Ma, Ziyu Zhang, Songxiang Liu, Linqin Li, Zheng Liang, Qixi Zheng, Rui Wang, Xiaoqin Feng, Weizhen Bian, Zhen Ye, Sitong Cheng, Ruibin Yuan, Zhixian Zhao, Xinfa Zhu, Jiahao Pan, Liumeng Xue, Pengcheng Zhu, Yunlin Chen, Zhifei Li, Xie Chen, Lei Xie, Yike Guo, Wei Xue,
- Abstract要約: 本稿では,音声を2つの補完トークンタイプに分解する単一ストリーム音声であるBiCodecを利用した新しいシステムであるSpark-TTSを紹介する。
制御可能なTSの研究を容易にするために,包括的な属性アノテーションを備えた10000時間データセットであるVoxBoxを紹介した。
- 参考スコア(独自算出の注目度): 31.575335190916995
- License:
- Abstract: Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、ゼロショット音声合成(TTS)において大きな進歩をもたらした。
しかし、既存の基盤モデルは、複数のコードブックを予測し、効率と統合の柔軟性を制限するために、多段階の処理や複雑なアーキテクチャに依存している。
これらの課題を克服するために,言語コンテンツ用の低ビット長意味トークンと話者属性用の固定長グローバルトークンの2つの補完トークンタイプに音声を分解する単一ストリーム音声コーデックであるBiCodecを利用した新しいシステムであるSpark-TTSを紹介する。
この不整合表現は、Qwen2.5 LLMとチェーン・オブ・ソート(CoT)生成アプローチと組み合わせて、粗粒度制御(例えば、性別、話し方)と微粒度調整(例えば、正確なピッチ値、話し方)の両方を可能にする。
制御可能なTSの研究を容易にするために,包括的な属性アノテーションを備えた10000時間データセットであるVoxBoxを紹介した。
大規模な実験により、Spark-TTSは最先端のゼロショット音声クローンを実現するだけでなく、参照ベース合成の限界を超える高度にカスタマイズ可能な音声を生成する。
ソースコード、事前トレーニングされたモデル、オーディオサンプルはhttps://github.com/SparkAudio/Spark-TTS.comで入手できる。
関連論文リスト
- CosyVoice 2: Scalable Streaming Speech Synthesis with Large Language Models [74.80386066714229]
改良されたストリーミング音声合成モデルCosyVoice 2を提案する。
具体的には,音声トークンのコードブック利用を改善するために,有限スカラー量子化を導入する。
我々は,様々な合成シナリオをサポートするために,チャンク対応因果フローマッチングモデルを開発した。
論文 参考訳(メタデータ) (2024-12-13T12:59:39Z) - Lina-Speech: Gated Linear Attention is a Fast and Parameter-Efficient Learner for text-to-speech synthesis [7.2129341612013285]
従来の自己注意機構を,Gated Linear Attention (GLA)のような新たな再帰的アーキテクチャに置き換えるモデルであるLina-Speechを紹介する。
このアプローチは高速で、デプロイが容易で、データセットのサイズが3分から15分に及ぶ場合に、微調整されたベースラインに匹敵するパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-10-30T04:50:40Z) - CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens [49.569695524535454]
本稿では, ベクトル量子化をエンコーダに挿入することにより, 多言語音声認識モデルから導出される, 教師付きセマンティックトークンを用いた音声表現を提案する。
トークンをベースとした拡張性のあるゼロショットTSシンセサイザーであるCosyVoiceは,テキスト・ツー・ツー・ケン生成のためのLLMと,トークン・ツー・音声合成のための条件付きフローマッチングモデルから構成される。
論文 参考訳(メタデータ) (2024-07-07T15:16:19Z) - VALL-E R: Robust and Efficient Zero-Shot Text-to-Speech Synthesis via Monotonic Alignment [101.2489492032816]
VALL-E Rは、堅牢で効率的なゼロショットテキスト音声合成システムである。
この研究は、失語症に罹患した人々のためのスピーチの作成を含む有意義なプロジェクトに適用される可能性がある。
論文 参考訳(メタデータ) (2024-06-12T04:09:44Z) - A Non-autoregressive Generation Framework for End-to-End Simultaneous Speech-to-Speech Translation [48.84039953531355]
同時音声翻訳のための新しい非自己回帰生成フレームワーク(NAST-S2X)を提案する。
NAST-S2Xは、音声テキストと音声音声タスクを統合エンドツーエンドフレームワークに統合する。
3秒未満の遅延で高品質な同時解釈を実現し、オフライン生成において28倍のデコードスピードアップを提供する。
論文 参考訳(メタデータ) (2024-06-11T04:25:48Z) - Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive
Bias [71.94109664001952]
Mega-TTSは、大規模な野生データで訓練された新しいゼロショットTSシステムである。
Mega-TTS はゼロショット TTS 音声編集や言語間 TTS タスクにおいて最先端 TTS システムを超えていることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:54:49Z) - NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot
Speech and Singing Synthesizers [90.83782600932567]
残差ベクトル化器を備えたニューラルオーディオ予測器を応用して量子化潜在ベクトルを得るTSシステムであるNaturalSpeech 2を開発した。
本研究では,NaturalSpeech 2を44K時間の音声・歌唱データを持つ大規模データセットに拡張し,未知話者の音声品質を評価する。
NaturalSpeech 2は、0ショット設定で、韻律/音節の類似性、合成、音声品質の点で、従来のTSシステムよりはるかに優れている。
論文 参考訳(メタデータ) (2023-04-18T16:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。