論文の概要: Randomized Algorithms for Symmetric Nonnegative Matrix Factorization
- arxiv url: http://arxiv.org/abs/2402.08134v2
- Date: Thu, 28 Nov 2024 20:13:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:14:54.956272
- Title: Randomized Algorithms for Symmetric Nonnegative Matrix Factorization
- Title(参考訳): 対称非負行列分解のためのランダム化アルゴリズム
- Authors: Koby Hayashi, Sinan G. Aksoy, Grey Ballard, Haesun Park,
- Abstract要約: 対称非負行列因子化(SymNMF)は、データ解析と機械学習における技術である。
計算のためのランダム化アルゴリズムを2つ開発した。
提案手法は, 解法の品質を概ね維持し, 大規模疎水化問題と大規模疎水化問題の両方に対して, 大幅な高速化を実現する。
- 参考スコア(独自算出の注目度): 1.991322361612643
- License:
- Abstract: Symmetric Nonnegative Matrix Factorization (SymNMF) is a technique in data analysis and machine learning that approximates a symmetric matrix with a product of a nonnegative, low-rank matrix and its transpose. To design faster and more scalable algorithms for SymNMF we develop two randomized algorithms for its computation. The first algorithm uses randomized matrix sketching to compute an initial low-rank approximation to the input matrix and proceeds to rapidly compute a SymNMF of the approximation. The second algorithm uses randomized leverage score sampling to approximately solve constrained least squares problems. Many successful methods for SymNMF rely on (approximately) solving sequences of constrained least squares problems. We prove theoretically that leverage score sampling can approximately solve nonnegative least squares problems to a chosen accuracy with high probability. Additionally, we prove sampling complexity results for previously proposed hybrid sampling techniques which deterministically include high leverage score rows. This hybrid scheme is crucial for obtaining speeds ups in practice. Finally we demonstrate that both methods work well in practice by applying them to graph clustering tasks on large real world data sets. These experiments show that our methods approximately maintain solution quality and achieve significant speed ups for both large dense and large sparse problems.
- Abstract(参考訳): Symmetric Non negative Matrix Factorization (SymNMF) は、非負の低ランク行列の積と対称行列を近似するデータ解析と機械学習の技法である。
SymNMF のための高速でスケーラブルなアルゴリズムを設計するために,その計算のための2つのランダム化アルゴリズムを開発した。
最初のアルゴリズムはランダム化された行列スケッチを用いて入力行列に対する初期低ランク近似を計算し、近似のSymNMFを高速に計算する。
第2のアルゴリズムは、ランダム化されたレバレッジスコアサンプリングを使用して、制約付き最小二乗問題を大まかに解決する。
SymNMF の多くの成功した手法は、制約付き最小二乗問題の列を(ほぼ)解くことに頼っている。
理論的には、非負の最小二乗問題を高い確率で選択した精度で解くことができる。
さらに,従来提案されていたハイブリットサンプリング手法において,高レバレッジスコア列を決定的に含む複雑なサンプリング結果を示す。
このハイブリッドスキームは、実際にスピードアップを得るためには不可欠である。
最後に、大規模な実世界のデータセット上のグラフクラスタリングタスクに適用することで、両方のメソッドが実際にうまく機能することを実証する。
これらの実験により,本手法は解法の品質を概ね維持し,高密度および大粒のスパース問題に対して大幅な高速化を実現することが示された。
関連論文リスト
- Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Learning the Positions in CountSketch [49.57951567374372]
本稿では,まずランダムなスケッチ行列に乗じてデータを圧縮し,最適化問題を高速に解くスケッチアルゴリズムについて検討する。
本研究では,ゼロでないエントリの位置を最適化する学習ベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-11T07:28:35Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
クロスモーダルハッシュは、大規模なマルチメディア検索問題を解決する方法として成功している。
これらの問題に対処する新しい非対称スケーラブルクロスモーダルハッシュ(ASCMH)を提案する。
我々のASCMHは、最先端のクロスモーダルハッシュ法よりも精度と効率の点で優れています。
論文 参考訳(メタデータ) (2022-07-26T04:38:47Z) - Matrix Reordering for Noisy Disordered Matrices: Optimality and
Computationally Efficient Algorithms [9.245687221460654]
単細胞生物学とメダゲノミクスの応用により,ノイズモノトンToeplitz行列モデルに基づく行列化の問題を考察した。
我々は、決定理論の枠組みでこの問題の基本的な統計的限界を確立し、制約付き最小二乗率を示す。
そこで本研究では,性能向上を保証した新しい時間適応ソートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-17T14:53:52Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
現在のアルゴリズムはブロック座標降下法や近点アルゴリズムを用いて設計されている。
本稿では,2次元投影法に基づく新しいアルゴリズムを提案し,慎重に設計された探索方向と変数分割方式を取り入れた。
合成および実世界のデータセットに対する実験結果から,提案アルゴリズムは最先端の手法と比較して計算効率を著しく向上させることを示した。
論文 参考訳(メタデータ) (2021-12-03T14:39:10Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
シンメトリー非負係数行列(SNMF)は、データクラスタリングの強力な方法であることを示した。
より良いクラスタリング結果を求めるアンサンブルクラスタリングにインスパイアされた,自己監視型SNMF(S$3$NMF)を提案する。
SNMFのコード特性に対する感度を、追加情報に頼らずに活用しています。
論文 参考訳(メタデータ) (2021-03-02T12:47:40Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
最小二乗問題に対する反復スケッチの性能について検討する。
本研究では、Haar行列とランダム化されたHadamard行列の収束速度が同一であることを示し、ランダムなプロジェクションを経時的に改善することを示した。
これらの手法は、ランダム化次元還元を用いた他のアルゴリズムにも適用することができる。
論文 参考訳(メタデータ) (2020-02-03T16:17:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。