Variational Continual Test-Time Adaptation
- URL: http://arxiv.org/abs/2402.08182v1
- Date: Tue, 13 Feb 2024 02:41:56 GMT
- Title: Variational Continual Test-Time Adaptation
- Authors: Fan Lyu, Kaile Du, Yuyang Li, Hanyu Zhao, Zhang Zhang, Guangcan Liu,
Liang Wang
- Abstract summary: The prior drift is crucial in Continual Test-Time Adaptation (CTTA) methods that only use unlabeled test data.
We introduce VCoTTA, a variational Bayesian approach to measure uncertainties in CTTA.
Experimental results on three datasets demonstrate the method's effectiveness in mitigating prior drift.
- Score: 25.262385466354253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prior drift is crucial in Continual Test-Time Adaptation (CTTA) methods
that only use unlabeled test data, as it can cause significant error
propagation. In this paper, we introduce VCoTTA, a variational Bayesian
approach to measure uncertainties in CTTA. At the source stage, we transform a
pre-trained deterministic model into a Bayesian Neural Network (BNN) via a
variational warm-up strategy, injecting uncertainties into the model. During
the testing time, we employ a mean-teacher update strategy using variational
inference for the student model and exponential moving average for the teacher
model. Our novel approach updates the student model by combining priors from
both the source and teacher models. The evidence lower bound is formulated as
the cross-entropy between the student and teacher models, along with the
Kullback-Leibler (KL) divergence of the prior mixture. Experimental results on
three datasets demonstrate the method's effectiveness in mitigating prior drift
within the CTTA framework.
Related papers
- DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
Training-free test-time dynamic adapter (TDA) is a promising approach to address this issue.
We propose a simple yet effective method for DistributiOnal Test-time Adaptation (Dota)
Dota continually estimates the distributions of test samples, allowing the model to continually adapt to the deployment environment.
arXiv Detail & Related papers (2024-09-28T15:03:28Z) - Source-Free Test-Time Adaptation For Online Surface-Defect Detection [29.69030283193086]
We propose a novel test-time adaptation surface-defect detection approach.
It adapts pre-trained models to new domains and classes during inference.
Experiments demonstrate it outperforms state-of-the-art techniques.
arXiv Detail & Related papers (2024-08-18T14:24:05Z) - Parameter-Selective Continual Test-Time Adaptation [3.480626767752489]
Continual Test-Time Adaptation (CTTA) aims to adapt a pretrained model to ever-changing environments during the test time under continuous domain shifts.
PSMT method is capable of effectively updating the critical parameters within the MT network under domain shifts.
arXiv Detail & Related papers (2024-07-02T13:18:15Z) - BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
We propose a Bagging deep learning training algorithm based on Efficient Neural network Diffusion (BEND)
Our approach is simple but effective, first using multiple trained model weights and biases as inputs to train autoencoder and latent diffusion model.
Our proposed BEND algorithm can consistently outperform the mean and median accuracies of both the original trained model and the diffused model.
arXiv Detail & Related papers (2024-03-23T08:40:38Z) - Periodically Exchange Teacher-Student for Source-Free Object Detection [7.222926042027062]
Source-free object detection (SFOD) aims to adapt the source detector to unlabeled target domain data in the absence of source domain data.
Most SFOD methods follow the same self-training paradigm using mean-teacher (MT) framework where the student model is guided by only one single teacher model.
We propose the Periodically Exchange Teacher-Student (PETS) method, a simple yet novel approach that introduces a multiple-teacher framework consisting of a static teacher, a dynamic teacher, and a student model.
arXiv Detail & Related papers (2023-11-23T11:30:54Z) - Diverse Data Augmentation with Diffusions for Effective Test-time Prompt
Tuning [73.75282761503581]
We propose DiffTPT, which leverages pre-trained diffusion models to generate diverse and informative new data.
Our experiments on test datasets with distribution shifts and unseen categories demonstrate that DiffTPT improves the zero-shot accuracy by an average of 5.13%.
arXiv Detail & Related papers (2023-08-11T09:36:31Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - A Probabilistic Framework for Lifelong Test-Time Adaptation [34.07074915005366]
Test-time adaptation (TTA) is the problem of updating a pre-trained source model at inference time given test input(s) from a different target domain.
We present PETAL (Probabilistic lifElong Test-time Adaptation with seLf-training prior), which solves lifelong TTA using a probabilistic approach.
Our method achieves better results than the current state-of-the-art for online lifelong test-time adaptation across various benchmarks.
arXiv Detail & Related papers (2022-12-19T18:42:19Z) - Transfer Learning with Uncertainty Quantification: Random Effect
Calibration of Source to Target (RECaST) [1.8047694351309207]
We develop a statistical framework for model predictions based on transfer learning, called RECaST.
We mathematically and empirically demonstrate the validity of our RECaST approach for transfer learning between linear models.
We examine our method's performance in a simulation study and in an application to real hospital data.
arXiv Detail & Related papers (2022-11-29T19:39:47Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.