World Model on Million-Length Video And Language With Blockwise RingAttention
- URL: http://arxiv.org/abs/2402.08268v4
- Date: Mon, 03 Feb 2025 21:47:31 GMT
- Title: World Model on Million-Length Video And Language With Blockwise RingAttention
- Authors: Hao Liu, Wilson Yan, Matei Zaharia, Pieter Abbeel,
- Abstract summary: We set new benchmarks in language retrieval and new capabilities in long video understanding.<n>We present an efficient open-source implementation for scalable training on long sequences.<n>We open-source a family of 7B parameter models capable of processing long text documents and videos exceeding 1M tokens.
- Score: 75.82014160713348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enabling long-context understanding remains a key challenge in scaling existing sequence models -- a crucial component in developing generally intelligent models that can process and operate over long temporal horizons that potentially consist of millions of tokens. In this paper, we aim to address these challenges by providing a comprehensive exploration of the full development process for producing 1M context language models and video-language models, setting new benchmarks in language retrieval and new capabilities in long video understanding. We detail our long context data curation process, progressive context extension from 4K to 1M tokens, and present an efficient open-source implementation for scalable training on long sequences. Additionally, we open-source a family of 7B parameter models capable of processing long text documents and videos exceeding 1M tokens.
Related papers
- Scaling Instruction-Tuned LLMs to Million-Token Contexts via Hierarchical Synthetic Data Generation [15.975325252309554]
We introduce a novel post-training synthetic data generation strategy designed to efficiently extend the context window of Large Language Models.
Our approach scalably extends to arbitrarily long context lengths, unconstrained by the length of available real-world data.
We demonstrate that our model, with a context length of up to 1M tokens, performs well on the RULER benchmark and InfiniteBench.
arXiv Detail & Related papers (2025-04-17T04:46:57Z) - Long-VITA: Scaling Large Multi-modal Models to 1 Million Tokens with Leading Short-Context Accuracy [111.1291107651131]
Long-VITA is a large multi-modal model for long-context visual-language understanding tasks.
It is adept at concurrently processing and analyzing modalities of image, video, and text over 4K frames or 1M tokens.
Long-VITA is fully reproducible and supports both NPU and GPU platforms for training and testing.
arXiv Detail & Related papers (2025-02-07T18:59:56Z) - Bootstrap Your Own Context Length [74.61148597039248]
We introduce a bootstrapping approach to train long-context language models by exploiting their short-context capabilities only.
The proposed data synthesis workflow requires only a short-context language model, a text retriever, and a document collection.
We conduct experiments with the open-source Llama-3 family of models and demonstrate that our method can successfully extend the context length to up to 1M tokens.
arXiv Detail & Related papers (2024-12-25T10:08:54Z) - Visual Context Window Extension: A New Perspective for Long Video Understanding [45.134271969594614]
We tackle the challenge of long video understanding from the perspective of context windows.
We propose to adapt LMMs for long video understanding tasks by extending the visual context window.
Our method consistently improves the performance as the number of video frames increases.
arXiv Detail & Related papers (2024-09-30T07:25:16Z) - Long Context Transfer from Language to Vision [74.78422371545716]
Video sequences offer valuable temporal information, but existing large multimodal models (LMMs) fall short in understanding extremely long videos.
In this paper, we approach this problem from the perspective of the language model.
By simply extrapolating the context length of the language backbone, we enable LMMs to comprehend orders of magnitude more visual tokens without any video training.
arXiv Detail & Related papers (2024-06-24T17:58:06Z) - Scaling Up Video Summarization Pretraining with Large Language Models [73.74662411006426]
We introduce an automated and scalable pipeline for generating a large-scale video summarization dataset.
We analyze the limitations of existing approaches and propose a new video summarization model that effectively addresses them.
Our work also presents a new benchmark dataset that contains 1200 long videos each with high-quality summaries annotated by professionals.
arXiv Detail & Related papers (2024-04-04T11:59:06Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - BAMBOO: A Comprehensive Benchmark for Evaluating Long Text Modeling Capacities of Large Language Models [141.21603469555225]
Large language models (LLMs) have achieved dramatic proficiency over NLP tasks with normal length.
We propose BAMBOO, a multi-task long context benchmark.
It consists of 10 datasets from 5 different long text understanding tasks.
arXiv Detail & Related papers (2023-09-23T11:36:15Z) - InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding
and Generation [90.71796406228265]
InternVid is a large-scale video-centric multimodal dataset that enables learning powerful and transferable video-text representations.
The InternVid dataset contains over 7 million videos lasting nearly 760K hours, yielding 234M video clips accompanied by detailed descriptions of total 4.1B words.
arXiv Detail & Related papers (2023-07-13T17:58:32Z) - A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot [67.00455874279383]
We propose verbalizing long videos to generate descriptions in natural language, then performing video-understanding tasks on the generated story as opposed to the original video.
Our method, despite being zero-shot, achieves significantly better results than supervised baselines for video understanding.
To alleviate a lack of story understanding benchmarks, we publicly release the first dataset on a crucial task in computational social science on persuasion strategy identification.
arXiv Detail & Related papers (2023-05-16T19:13:11Z) - Understanding Chinese Video and Language via Contrastive Multimodal
Pre-Training [79.88705563918413]
We propose a novel video-language understanding framework named VICTOR, which stands for VIdeo-language understanding via Contrastive mulTimOdal pRe-training.
VICTOR is trained on a large-scale Chinese video-language dataset, including over 10 million complete videos with corresponding high-quality textual descriptions.
arXiv Detail & Related papers (2021-04-19T15:58:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.