A quantum gradient descent algorithm for optimizing Gaussian Process models
- URL: http://arxiv.org/abs/2503.17780v1
- Date: Sat, 22 Mar 2025 14:14:31 GMT
- Title: A quantum gradient descent algorithm for optimizing Gaussian Process models
- Authors: Junpeng Hu, Jinglai Li, Lei Zhang, Shi Jin,
- Abstract summary: We propose a quantum gradient descent algorithm to optimize the Gaussian Process model.<n>Our algorithm achieves exponential speedup in computing the gradients of the log marginal likelihood.
- Score: 28.16587217223671
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian Process Regression (GPR) is a nonparametric supervised learning method, widely valued for its ability to quantify uncertainty. Despite its advantages and broad applications, classical GPR implementations face significant scalability challenges, as they involve matrix operations with a cubic complexity in relation to the dataset size. This computational challenge is further compounded by the demand of optimizing the Gaussian Process model over its hyperparameters, rendering the total computational cost prohibitive for data intensive problems. To address this issue, we propose a quantum gradient descent algorithm to optimize the Gaussian Process model. Taking advantage of recent advances in quantum algorithms for linear algebra, our algorithm achieves exponential speedup in computing the gradients of the log marginal likelihood. The entire gradient descent process is integrated into the quantum circuit. Through runtime analysis and error bounds, we demonstrate that our approach significantly improves the scalability of GPR model optimization, making it computationally feasible for large-scale applications.
Related papers
- Preconditioned Additive Gaussian Processes with Fourier Acceleration [2.292881746604941]
We introduce a matrix-free method to achieve nearly linear complexity in the multiplication of kernel matrices and their derivatives.
To address high-dimensional problems, we propose an additive kernel approach.
Each sub- Kernel captures lower-order feature interactions, allowing for the efficient application of the NFFT method.
arXiv Detail & Related papers (2025-04-01T07:14:06Z) - Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
We present a new method for calculating expectation values of operators that can be expressed as a linear combination of unitary (LCU) operators.<n>This method is general for any quantum algorithm and is of particular interest in the acceleration of variational quantum algorithms.
arXiv Detail & Related papers (2025-03-03T17:15:23Z) - Quantum Maximum Entropy Inference and Hamiltonian Learning [4.9614587340495]
This work extends algorithms for maximum entropy inference and learning of graphical models to the quantum realm.
The generalization, known as quantum iterative scaling (QIS), is straightforward, but the key challenge lies in the non-commutative nature of quantum problem instances.
We explore quasi-Newton methods to enhance the performance of QIS and GD.
arXiv Detail & Related papers (2024-07-16T08:11:34Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models.
New algorithms retain the ease of implementation of the classical GP-UCB, but an additional exploration step facilitates their convergence.
arXiv Detail & Related papers (2024-01-30T14:16:06Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Pure Quantum Gradient Descent Algorithm and Full Quantum Variational
Eigensolver [0.7149735232319818]
gradient-based gradient descent algorithm is a widely adopted optimization method.
We propose a novel quantum-based gradient calculation method that requires only a single oracle calculation.
We successfully implemented the quantum gradient descent algorithm and applied it to the Variational Quantum Eigensolver (VQE)
arXiv Detail & Related papers (2023-05-07T05:52:41Z) - Quantum Gaussian Process Regression for Bayesian Optimization [0.0]
We propose a new approach to Gaussian process regression using quantum kernels based on parameterized quantum circuits.
By employing a hardware-efficient feature map and careful regularization of the Gram matrix, we demonstrate that the variance information of the resulting quantum Gaussian process can be preserved.
arXiv Detail & Related papers (2023-04-25T15:38:19Z) - Scalable Gaussian Process Hyperparameter Optimization via Coverage
Regularization [0.0]
We present a novel algorithm which estimates the smoothness and length-scale parameters in the Matern kernel in order to improve robustness of the resulting prediction uncertainties.
We achieve improved UQ over leave-one-out likelihood while maintaining a high degree of scalability as demonstrated in numerical experiments.
arXiv Detail & Related papers (2022-09-22T19:23:37Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.