論文の概要: Large Language Models as Minecraft Agents
- arxiv url: http://arxiv.org/abs/2402.08392v1
- Date: Tue, 13 Feb 2024 11:37:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 15:42:18.847407
- Title: Large Language Models as Minecraft Agents
- Title(参考訳): minecraftエージェントとしての大規模言語モデル
- Authors: Chris Madge and Massimo Poesio
- Abstract要約: 本研究では,インテリジェンスエージェントとして機能する上で,LLM(Large Language Models)の利用について検討する。
明確化に関する質問を導入し、改善の課題と機会について検討する。
- 参考スコア(独自算出の注目度): 6.563602649100242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we examine the use of Large Language Models (LLMs) in the
challenging setting of acting as a Minecraft agent. We apply and evaluate LLMs
in the builder and architect settings, introduce clarification questions and
examining the challenges and opportunities for improvement. In addition, we
present a platform for online interaction with the agents and an evaluation
against previous works.
- Abstract(参考訳): 本研究では,大規模な言語モデル(LLM)をMinecraftエージェントとして機能させる上での課題について検討する。
ビルダーとアーキテクトの設定にLCMを適用して評価し、明確化の問題を導入し、改善の課題と機会を検討する。
さらに,エージェントとのオンラインインタラクションのためのプラットフォームと,過去の作業に対する評価について述べる。
関連論文リスト
- GUI Agents with Foundation Models: A Comprehensive Survey [52.991688542729385]
この調査は(M)LLMベースのGUIエージェントに関する最近の研究を集約する。
データ、フレームワーク、アプリケーションにおける重要なイノベーションを強調します。
本稿では, (M)LLM ベースの GUI エージェントの分野におけるさらなる発展を期待する。
論文 参考訳(メタデータ) (2024-11-07T17:28:10Z) - Large Language Model-Based Agents for Software Engineering: A Survey [20.258244647363544]
近年のLarge Language Models(LLM)の進歩は、AIエージェント、すなわちLLMベースのエージェントの新しいパラダイムを形成している。
我々は106の論文を収集し、それらを2つの視点、すなわちSEとエージェントの観点から分類する。
さらに、この重要な領域におけるオープンな課題と今後の方向性についても論じる。
論文 参考訳(メタデータ) (2024-09-04T15:59:41Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
大規模マルチモーダルモデル(LMM)は、人工知能の新たな時代を迎え、言語と視覚の融合によって、高い能力を持つVisual Foundation Agentを形成する。
既存のベンチマークでは、複雑な実世界の環境でのLMMの可能性を十分に証明できない。
VisualAgentBench (VAB) は、視覚基礎エージェントとしてLMMを訓練し評価するための先駆的なベンチマークである。
論文 参考訳(メタデータ) (2024-08-12T17:44:17Z) - A LLM Benchmark based on the Minecraft Builder Dialog Agent Task [5.555936227537389]
本研究では,空間的指向性タスクにおけるLLM能力を評価するのに適したLCMベンチマークにMinecraftビルダータスクを適用することを提案する。
このアプローチにより、異なるエージェントの特定の長所や短所を探索し、空間的推論とベクトルベースの数学の挑戦的な領域におけるLLMの能力をテストすることができると信じている。
論文 参考訳(メタデータ) (2024-07-17T16:52:23Z) - Deciphering Digital Detectives: Understanding LLM Behaviors and
Capabilities in Multi-Agent Mystery Games [26.07074182316433]
本稿では,Jubenshaに特化している最初のデータセットについて紹介する。
我々の研究は、LSMを使ったユニークなマルチエージェントインタラクションフレームワークも提供し、AIエージェントがこのゲームに自律的に関与できるようにする。
これらのAIエージェントのゲーム性能を評価するために,ケース情報と推論スキルの熟達度を測定する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-12-01T17:33:57Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Online Advertisements with LLMs: Opportunities and Challenges [51.96140910798771]
本稿では,オンライン広告システムにおけるLarge Language Models(LLM)の活用の可能性について検討する。
提案手法は,LLM広告の修正,入札,予測,オークションモジュールから構成される。
論文 参考訳(メタデータ) (2023-11-11T02:13:32Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションのための強力なツールとして登場した。
LLMの本質的な生成能力は、その長所にもかかわらず、複雑なタスクを扱うには不十分である。
本稿では,LLMベースのAIエージェントに適した構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-07T09:22:03Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
本稿では,ユーザガイド応答最適化 (UGRO) という代替手法を提案し,タスク指向の対話モデルと組み合わせる。
このアプローチでは、アノテーションのないユーザシミュレータとしてLLMを使用して対話応答を評価し、より小型のエンドツーエンドTODモデルと組み合わせる。
提案手法は従来のSOTA(State-of-the-art)よりも優れている。
論文 参考訳(メタデータ) (2023-06-16T13:04:56Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。