Frequency-aware Graph Signal Processing for Collaborative Filtering
- URL: http://arxiv.org/abs/2402.08426v1
- Date: Tue, 13 Feb 2024 12:53:18 GMT
- Title: Frequency-aware Graph Signal Processing for Collaborative Filtering
- Authors: Jiafeng Xia, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, Li Shang and
Ning Gu
- Abstract summary: We propose a frequency-aware graph signal processing method (FaGSP) for collaborative filtering.
Firstly, we design a Cascaded Filter Module, consisting of an ideal high-pass filter and an ideal low-pass filter.
Then, we devise a Parallel Filter Module, consisting of two low-pass filters that can easily capture the hierarchy of neighborhood.
- Score: 26.317108637430664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Signal Processing (GSP) based recommendation algorithms have recently
attracted lots of attention due to its high efficiency. However, these methods
failed to consider the importance of various interactions that reflect unique
user/item characteristics and failed to utilize user and item high-order
neighborhood information to model user preference, thus leading to sub-optimal
performance. To address the above issues, we propose a frequency-aware graph
signal processing method (FaGSP) for collaborative filtering. Firstly, we
design a Cascaded Filter Module, consisting of an ideal high-pass filter and an
ideal low-pass filter that work in a successive manner, to capture both unique
and common user/item characteristics to more accurately model user preference.
Then, we devise a Parallel Filter Module, consisting of two low-pass filters
that can easily capture the hierarchy of neighborhood, to fully utilize
high-order neighborhood information of users/items for more accurate user
preference modeling. Finally, we combine these two modules via a linear model
to further improve recommendation accuracy. Extensive experiments on six public
datasets demonstrate the superiority of our method from the perspectives of
prediction accuracy and training efficiency compared with state-of-the-art
GCN-based recommendation methods and GSP-based recommendation methods.
Related papers
- Beyond Kalman Filters: Deep Learning-Based Filters for Improved Object
Tracking [3.5693768338940304]
We propose two innovative data-driven filtering methods for tracking-by-detection systems.
The first method employs a Bayesian filter with a trainable motion model to predict an object's future location.
The second method, an end-to-end trainable filter, goes a step further by learning to correct detector errors.
arXiv Detail & Related papers (2024-02-15T10:47:44Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Adaptive spectral graph wavelets for collaborative filtering [5.547800834335382]
Collaborative filtering is a popular approach in recommender systems, whose objective is to provide personalized item suggestions.
We introduce a spectral graph wavelet collaborative filtering framework for implicit feedback data, where users, items and their interactions are represented as a bipartite graph.
In addition to capturing the graph's local and global structures, our approach yields localization of graph signals in both spatial and spectral domains.
arXiv Detail & Related papers (2023-12-05T22:22:25Z) - Neural Graph Collaborative Filtering Using Variational Inference [19.80976833118502]
We introduce variational embedding collaborative filtering (GVECF) as a novel framework to incorporate representations learned through a variational graph auto-encoder.
Our proposed method achieves up to 13.78% improvement in the recall over the test data.
arXiv Detail & Related papers (2023-11-20T15:01:33Z) - Broad Recommender System: An Efficient Nonlinear Collaborative Filtering
Approach [56.12815715932561]
We propose a new broad recommender system called Broad Collaborative Filtering (BroadCF)
Instead of Deep Neural Networks (DNNs), Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items.
Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm.
arXiv Detail & Related papers (2022-04-20T01:25:08Z) - Filter-enhanced MLP is All You Need for Sequential Recommendation [89.0974365344997]
In online platforms, logged user behavior data is inevitable to contain noise.
We borrow the idea of filtering algorithms from signal processing that attenuates the noise in the frequency domain.
We propose textbfFMLP-Rec, an all-MLP model with learnable filters for sequential recommendation task.
arXiv Detail & Related papers (2022-02-28T05:49:35Z) - Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative
Filtering [59.349057602266]
Variational AutoEncoder (VAE) has been extended as a representative nonlinear method for collaborative filtering.
We propose to decompose the inner-product-based softmax probability based on the inverted multi-index.
FastVAE can outperform the state-of-the-art baselines in terms of both sampling quality and efficiency.
arXiv Detail & Related papers (2021-09-13T08:31:59Z) - Unsharp Mask Guided Filtering [53.14430987860308]
The goal of this paper is guided image filtering, which emphasizes the importance of structure transfer during filtering.
We propose a new and simplified formulation of the guided filter inspired by unsharp masking.
Our formulation enjoys a filtering prior to a low-pass filter and enables explicit structure transfer by estimating a single coefficient.
arXiv Detail & Related papers (2021-06-02T19:15:34Z) - Dependency Aware Filter Pruning [74.69495455411987]
Pruning a proportion of unimportant filters is an efficient way to mitigate the inference cost.
Previous work prunes filters according to their weight norms or the corresponding batch-norm scaling factors.
We propose a novel mechanism to dynamically control the sparsity-inducing regularization so as to achieve the desired sparsity.
arXiv Detail & Related papers (2020-05-06T07:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.