論文の概要: Can LLMs Learn New Concepts Incrementally without Forgetting?
- arxiv url: http://arxiv.org/abs/2402.08526v3
- Date: Tue, 18 Jun 2024 06:56:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 04:15:24.195303
- Title: Can LLMs Learn New Concepts Incrementally without Forgetting?
- Title(参考訳): LLMは新しい概念を忘れずにインクリメンタルに学ぶことができるか?
- Authors: Junhao Zheng, Shengjie Qiu, Qianli Ma,
- Abstract要約: 大規模言語モデル(LLM)は様々なタスクで目覚ましい成功を収めていますが、それを忘れずに漸進的に学習する能力は未熟です。
概念1K(Concept-1K)は,最近出現した1023個の概念を網羅した新しいデータセットである。
概念1Kをテストベッドとして使うことで、私たちは「LLMは人間のように忘れることなく、段階的に新しい概念を学ぶことができるのか?」という疑問に答えることを目指しています。
- 参考スコア(独自算出の注目度): 21.95081572612883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have achieved remarkable success across various tasks, yet their ability to learn incrementally without forgetting remains underexplored. Incremental learning (IL) is crucial as it enables models to acquire new knowledge while retaining previously learned information, akin to human learning. Existing benchmarks for IL are insufficient due to data leakage issues and the overqualification of LLMs. To address these challenges, we introduce Concept-1K, a novel dataset comprising 1,023 recently emerged concepts across diverse domains. The concepts in Concept-1K are discrete, interpretable units of knowledge that allow for fine-grained analysis of learning and forgetting processes. Using Concept-1K as a testbed, we aim to answer the question: ``Can LLMs learn new concepts incrementally without forgetting like humans?'' Our investigation reveals that LLMs still suffer from catastrophic forgetting and that LoRA, despite fine-tuning fewer parameters, may lead to more forgetting on training data. Additionally, we explore the roles of in-context learning, model scale, buffer size, and pretraining in IL performance. These findings highlight the strengths and limitations of LLMs in IL scenarios and provide a robust benchmark for future research.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々なタスクで目覚ましい成功を収めていますが、それを忘れずに漸進的に学習する能力は未熟です。
インクリメンタルラーニング(IL)は、モデルが人間の学習と同様、以前に学習した情報を保持しながら新しい知識を得ることを可能にするため、重要である。
既存のILのベンチマークは、データ漏洩問題とLLMの過度な調整のために不十分である。
これらの課題に対処するために,概念1K(Concept-1K)を紹介した。
概念1Kの概念は離散的で解釈可能な知識の単位であり、学習と忘れる過程のきめ細かい分析を可能にする。
テストベッドとしてConcept-1Kを使用すれば、"Can LLMs learn new concept without forgeting like human?"という質問に答えるつもりです。
さらに、インコンテキスト学習、モデルスケール、バッファサイズ、およびIL性能の事前学習の役割についても検討する。
これらの知見は、ILシナリオにおけるLLMの強みと限界を強調し、将来の研究のための堅牢なベンチマークを提供する。
関連論文リスト
- Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
大規模言語モデル(LLM)は、事前訓練中に多様なドメインから膨大な量の知識を学習することができる。
専門ドメインからの長い尾の知識は、しばしば不足し、表現されていないため、モデルの記憶にはほとんど現れない。
ICLの強化学習に基づく動的不確実性ランキング手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T03:42:17Z) - Does your LLM truly unlearn? An embarrassingly simple approach to recover unlearned knowledge [36.524827594501495]
未学習のモデルに量子化を適用することで、「忘れられた」情報を復元できることを示す。
実用性制約のある未学習の手法では、未学習モデルは、意図された忘れられた知識の21%を完全な精度で保持する。
論文 参考訳(メタデータ) (2024-10-21T19:28:37Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Knowledge Unlearning for LLMs: Tasks, Methods, and Challenges [11.228131492745842]
大規模言語モデル(LLM)は、自然言語処理における新しい研究パラダイムを刺激している。
知識に基づく質問応答と推論の優れた能力にもかかわらず、欠陥や有害な知識を保持する可能性は、悪意のあるアプリケーションにリスクをもたらす。
機械学習の類似研究から派生した知識アンラーニングは、この問題に対処するための有望な道を示す。
論文 参考訳(メタデータ) (2023-11-27T12:37:51Z) - Enabling Large Language Models to Learn from Rules [99.16680531261987]
私たちは、人間がルールから学習することで、新しいタスクや知識を別の方法で学習できることにインスピレーションを受けています。
まず, LLMの強い文脈内能力を用いて, テキスト規則から知識を抽出する規則蒸留法を提案する。
実験の結果, LLMをルールから学習させることは, サンプルサイズと一般化能力の両方において, サンプルベース学習よりもはるかに効率的であることがわかった。
論文 参考訳(メタデータ) (2023-11-15T11:42:41Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
大規模言語モデル(LLM)は汎用的であり、その創発的能力と一般化性のために異なるタスクを解くことができる。
以前の研究では、グラフニューラルネットワーク(GNN)のような追加モジュールは、外部の知識ベースから取得した知識に基づいて訓練されている。
論文 参考訳(メタデータ) (2023-09-06T15:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。