Self-Induced Superradiant Masing
- URL: http://arxiv.org/abs/2402.08537v1
- Date: Tue, 13 Feb 2024 15:42:40 GMT
- Title: Self-Induced Superradiant Masing
- Authors: Wenzel Kersten, Nikolaus de Zordo, Elena S. Redchenko, Nikolaos Lagos,
Andrew N. Kanagin, Andreas Angerer, William J. Munro, Kae Nemoto, Igor E.
Mazets, J\"org Schmiedmayer
- Abstract summary: We study superradiant masing in a hybrid system composed of nitrogen-vacancy center spins in diamond coupled to a superconducting microwave cavity.
We conjecture that direct higher-order spin-spin interactions are responsible for creating the dynamics and the transition to the sustained masing.
- Score: 0.43533652831655184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study superradiant masing in a hybrid system composed of nitrogen-vacancy
center spins in diamond coupled to a superconducting microwave cavity. After
the first fast superradiant decay we observe transient pulsed and then
quasi-continuous masing. This emission dynamics can be described by a
phenomenological model incorporating the transfer of inverted spin excitations
into the superradiant window of spins resonant with the cavity. After
experimentally excluding cQED effects associated with the pumping of the masing
transition we conjecture that direct higher-order spin-spin interactions are
responsible for creating the dynamics and the transition to the sustained
masing. Our experiment thus opens up a novel way to explore many-body physics
in disordered systems through cQED and superradiance.
Related papers
- Spin-self-organization in an optical cavity facilitated by inhomogeneous broadening [0.0]
We study the onset of collective spin-self-organization in a thermal ensemble of driven two-level atoms confined in an optical cavity.
We find that inhomogeneous Doppler broadening facilitates the onset of spin-self-organization.
arXiv Detail & Related papers (2024-07-29T05:03:53Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Controlled excitation of rotons in superfluid helium with an optical
centrifuge [77.34726150561087]
We show that the orientation of the angular momentum transferred from the laser field to the rotons, is dictated by the centrifuge.
The observed decay of the coherent Raman signal suggests that the decoherence is governed by the scattering on thermal rotons and phonons.
arXiv Detail & Related papers (2023-06-02T23:30:03Z) - Dynamics of molecular rotors in bulk superfluid helium [68.8204255655161]
We report on the experimental study of the laser-induced rotation of helium dimers inside the superfluid $4mathrmHe$ bath at variable temperature.
The observed temperature dependence suggests a non-equilibrium evolution of the quantum bath, accompanied by the emission of the wave of second sound.
arXiv Detail & Related papers (2023-04-08T01:22:19Z) - Kagome qubit ice [55.73970798291771]
Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations.
We present a realization of kagome spin ice in the superconducting qubits of a quantum annealer.
We show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase.
arXiv Detail & Related papers (2023-01-04T23:46:48Z) - Observation of superradiant bursts in a cascaded quantum system [0.0]
Dicke superradiance describes the collective radiative decay of a fully inverted ensemble of two-level atoms.
We experimentally investigate this effect for a chiral, i.e.,direction-dependent light--matter coupling.
Our results shed light on the collective radiative dynamics of cascaded quantum many-body systems.
arXiv Detail & Related papers (2022-11-16T14:36:10Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Controlling atomic spin-mixing via multiphoton transitions in a cavity [9.689132866315152]
We control spin-mixing dynamics in a gas of spinor atoms using two off-resonant Raman transition pathways and a bichromatic pump laser.
The Quench and driving dynamics of the atomic collective spin are shown to be controllable on a faster time scale than in existing experiments.
arXiv Detail & Related papers (2022-04-20T16:43:53Z) - A Superradiant Maser with Nitrogen-Vacancy Center Spins [4.620106182077669]
We show that a superradiant maser with a linewidth below millihertz can be achieved with moderate kilohertz incoherent pumping.
We show that the superradiant masing prevails in the presence of inhomogeneous broadening.
arXiv Detail & Related papers (2021-05-26T06:27:15Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.