Emergence of superradiance in dissipative dipolar-coupled spin systems
- URL: http://arxiv.org/abs/2406.09100v1
- Date: Thu, 13 Jun 2024 13:29:07 GMT
- Title: Emergence of superradiance in dissipative dipolar-coupled spin systems
- Authors: Saptarshi Saha, Yeshma Ibrahim, Rangeet Bhattacharyya,
- Abstract summary: This work shows that dissipative dipolar-coupled systems exhibit an identical collective dissipation aided by the nonsecular part of the dipolar coupling.
Our results agree well with the standard results of pure spin superradiance observed experimentally in various systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the superradiance phenomenon, a collection of non-interacting atoms exhibits collective dissipation due to interaction with a common radiation field, resulting in a non-monotonic decay profile. This work shows that dissipative dipolar-coupled systems exhibit an identical collective dissipation aided by the nonsecular part of the dipolar coupling. We consider a simplified dipolar network where the dipolar interaction between the spin-pairs is assumed to be identical. Hence the dynamics remain confined in the block diagonal Hilbert spaces. For a suitable choice of the initial condition, the resulting dynamics require dealing with a smaller subspace which helps extend the analysis to a larger spin network. To include the nonsecular dipolar relaxation, we use a fluctuation-regulated quantum master equation. We note that a successful observation of superradiance in this system requires a weak system-bath coupling. Moreover, we find that for an ensemble of N spins, the maximum intensity of the radiation exhibits a nearly quadratic scaling (N^2), and the dipolar relaxation time follows an inverse square proportionality (1/N^2); these two observations help characterize the emergence of superradiance. Our results agree well with the standard results of pure spin superradiance observed experimentally in various systems.
Related papers
- Quantum spin chains with bond dissipation [0.26107298043931204]
We study the effect of bond dissipation on the one-dimensional antiferromagnetic spin-$1/2$ Heisenberg model.
Our results suggest that the critical properties of the dissipative system are the same as for the spin-Peierls model.
arXiv Detail & Related papers (2023-10-17T18:46:27Z) - Conventional and unconventional Dicke models: Multistabilities and
nonequilibrium dynamics [0.0]
The stability and dynamics of the system in the thermodynamic limit are examined using a semiclassical approach.
We perform small-scale full quantum-mechanical calculations, with results consistent with the semiclassical ones.
arXiv Detail & Related papers (2023-07-11T18:00:12Z) - Observation of superradiant bursts in a cascaded quantum system [0.0]
Dicke superradiance describes the collective radiative decay of a fully inverted ensemble of two-level atoms.
We experimentally investigate this effect for a chiral, i.e.,direction-dependent light--matter coupling.
Our results shed light on the collective radiative dynamics of cascaded quantum many-body systems.
arXiv Detail & Related papers (2022-11-16T14:36:10Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Dispersion relation of a polaron in the Yang-Gaudin Bose gas [0.0]
We study a one-dimensional Bose gas with two internal states described by the Yang-Gaudin model.
We calculate analytically the dispersion relation of a polaron quasiparticle, which is the lowest excitation branch.
arXiv Detail & Related papers (2021-11-19T20:08:44Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.