論文の概要: NeuroIDBench: An Open-Source Benchmark Framework for the Standardization of Methodology in Brainwave-based Authentication Research
- arxiv url: http://arxiv.org/abs/2402.08656v5
- Date: Thu, 11 Jul 2024 15:18:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 23:17:39.763199
- Title: NeuroIDBench: An Open-Source Benchmark Framework for the Standardization of Methodology in Brainwave-based Authentication Research
- Title(参考訳): NeuroIDBench:脳波ベースの認証研究における方法論の標準化のためのオープンソースのベンチマークフレームワーク
- Authors: Avinash Kumar Chaurasia, Matin Fallahi, Thorsten Strufe, Philipp Terhörst, Patricia Arias Cabarcos,
- Abstract要約: 脳活動に基づく生体認証システムは、パスワードに代わるものや、現在の認証技術を補完するものとして提案されている。
NeuroIDBenchは、脳波ベースの認証モデルをベンチマークするための柔軟なオープンソースツールである。
- 参考スコア(独自算出の注目度): 4.9286860173040825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biometric systems based on brain activity have been proposed as an alternative to passwords or to complement current authentication techniques. By leveraging the unique brainwave patterns of individuals, these systems offer the possibility of creating authentication solutions that are resistant to theft, hands-free, accessible, and potentially even revocable. However, despite the growing stream of research in this area, faster advance is hindered by reproducibility problems. Issues such as the lack of standard reporting schemes for performance results and system configuration, or the absence of common evaluation benchmarks, make comparability and proper assessment of different biometric solutions challenging. Further, barriers are erected to future work when, as so often, source code is not published open access. To bridge this gap, we introduce NeuroIDBench, a flexible open source tool to benchmark brainwave-based authentication models. It incorporates nine diverse datasets, implements a comprehensive set of pre-processing parameters and machine learning algorithms, enables testing under two common adversary models (known vs unknown attacker), and allows researchers to generate full performance reports and visualizations. We use NeuroIDBench to investigate the shallow classifiers and deep learning-based approaches proposed in the literature, and to test robustness across multiple sessions. We observe a 37.6% reduction in Equal Error Rate (EER) for unknown attacker scenarios (typically not tested in the literature), and we highlight the importance of session variability to brainwave authentication. All in all, our results demonstrate the viability and relevance of NeuroIDBench in streamlining fair comparisons of algorithms, thereby furthering the advancement of brainwave-based authentication through robust methodological practices.
- Abstract(参考訳): 脳活動に基づく生体認証システムは、パスワードに代わるものや、現在の認証技術を補完するものとして提案されている。
個人の独自の脳波パターンを活用することで、これらのシステムは盗難に抵抗し、ハンズフリーでアクセス可能で、さらには取り消しも可能な認証ソリューションを作成することができる。
しかし、この分野では研究の流れが拡大しているにもかかわらず、再現性の問題によって急速な進歩が妨げられている。
パフォーマンス結果やシステム構成に関する標準的な報告スキームの欠如や、一般的な評価ベンチマークの欠如といった問題により、様々なバイオメトリックソリューションのコンパラビリティと適切な評価が困難になる。
さらに、ソースコードが公開されていない場合、バリアは将来の作業のために構築される。
このギャップを埋めるために、脳波ベースの認証モデルをベンチマークする柔軟なオープンソースツールであるNeuroIDBenchを紹介します。
9つの多様なデータセットが組み込まれ、包括的な前処理パラメータと機械学習アルゴリズムを実装し、2つの共通の敵モデル(既知の攻撃者対未知の攻撃者)下でのテストを可能にし、研究者が完全なパフォーマンスレポートと視覚化を生成することができる。
我々はNeuroIDBenchを用いて,本論文で提案されている浅層分類器と深層学習に基づくアプローチを調査し,複数のセッションで堅牢性をテストする。
我々は、未知の攻撃シナリオ(典型的には文献ではテストされていない)に対して、37.6%のEER(Equal Error Rate)の削減を観察し、脳波認証におけるセッション変動の重要性を強調した。
総じて,我々は,アルゴリズムの公正比較を合理化する上で,NeuroIDBenchの有効性と妥当性を実証し,堅牢な方法論的手法による脳波認証の進歩を推し進めた。
関連論文リスト
- Beyond Gaze Points: Augmenting Eye Movement with Brainwave Data for Multimodal User Authentication in Extended Reality [4.114205202954365]
眼球運動と脳波パターンを組み合わせた多モード生体認証システムを提案する。
本システムでは、眼球運動モードと比較して、EERが83.6%減少する、優れたEER(Equal Error Rate)が0.298%となる。
論文 参考訳(メタデータ) (2024-04-29T13:42:55Z) - Biometrics Employing Neural Network [0.0]
指紋、虹彩、網膜パターン、顔認識、手形、手のひら印刷、音声認識はバイオメトリックスの形式としてよく用いられる。
システムが効果的で広く受け入れられるためには、認識と検証におけるエラー率はゼロに近づかなければならない。
人間の脳の動作をシミュレートする人工ニューラルネットワークは、自身を有望なアプローチとして提示する。
論文 参考訳(メタデータ) (2024-02-01T03:59:04Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - NeuroBench: A Framework for Benchmarking Neuromorphic Computing
Algorithms and Systems [51.8066436083197]
NeuroBenchは、ニューロモルフィックコンピューティングアルゴリズムとシステムのベンチマークフレームワークである。
NeuroBenchは、業界とアカデミックの50以上の機関で100人近い共著者からなるオープンコミュニティから共同で設計された取り組みである。
論文 参考訳(メタデータ) (2023-04-10T15:12:09Z) - Fingerprint Image-Quality Estimation and its Application to
Multialgorithm Verification [56.128200319868526]
信号品質の認識は、認識率を増大させ、マルチセンサー環境における決定を著しく支援することが見出されている。
本稿では, 指紋画像の向きテンソルを用いて, ノイズ, 構造不足, ぼやけなどの信号障害を, 対称性記述子の助けを借りて定量化する。
定量的な結果は、あらゆる面において品質意識を優先し、認識率を高め、異なるスキルを持つ専門家を効果的かつ効果的に融合させる。
論文 参考訳(メタデータ) (2022-11-24T12:17:49Z) - Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal
Biometric Fusion Algorithms [58.156733807470395]
本稿では,BioSecure DS2 (Access Control) 評価キャンペーンの枠組み内で実施したベンチマーク研究について報告する。
キャンペーンは、約500人の中規模施設における物理的アクセス制御の適用を目標とした。
我々の知る限りでは、これは品質ベースのマルチモーダル融合アルゴリズムをベンチマークする最初の試みである。
論文 参考訳(メタデータ) (2021-11-17T13:39:48Z) - Benchmarking the Accuracy and Robustness of Feedback Alignment
Algorithms [1.2183405753834562]
バックプロパゲーションは、その単純さ、効率性、高収束率のために、ディープニューラルネットワークをトレーニングするためのデフォルトのアルゴリズムである。
近年,より生物学的に妥当な学習法が提案されている。
BioTorchは、生物学的に動機付けられたニューラルネットワークを作成し、トレーニングし、ベンチマークするソフトウェアフレームワークである。
論文 参考訳(メタデータ) (2021-08-30T18:02:55Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - AuthNet: A Deep Learning based Authentication Mechanism using Temporal
Facial Feature Movements [0.0]
パスワードを発話しながら、顔認識と、その顔のユニークな動きの両方を利用する認証機構を提案する。
提案したモデルは,任意の言語でパスワードを設定することができるため,言語障壁によって阻害されない。
論文 参考訳(メタデータ) (2020-12-04T10:46:12Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
オープンセット認識のための条件付き確率生成モデル(CPGM)を提案する。
CPGMは未知のサンプルを検出できるが、異なる潜在特徴を条件付きガウス分布に近似させることで、既知のクラスを分類できる。
複数のベンチマークデータセットの実験結果から,提案手法がベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2020-08-12T06:23:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。