Anomaly inflow, dualities, and quantum simulation of abelian lattice gauge theories induced by measurements
- URL: http://arxiv.org/abs/2402.08720v2
- Date: Sun, 06 Oct 2024 01:45:55 GMT
- Title: Anomaly inflow, dualities, and quantum simulation of abelian lattice gauge theories induced by measurements
- Authors: Takuya Okuda, Aswin Parayil Mana, Hiroki Sukeno,
- Abstract summary: Previous work has demonstrated that quantum simulation of abelian lattice gauge theories can be achieved by local adaptive measurements.
In this work, we explicitly demonstrate the anomaly inflow mechanism between the deconfining phase of the simulated gauge theory on the boundary and the SPT state in the bulk.
We construct the resource state and the measurement pattern for the measurement-based quantum simulation of a lattice gauge theory with a matter field.
- Score: 0.0
- License:
- Abstract: Previous work [SciPost Phys. 14, 129 (2023)] has demonstrated that quantum simulation of abelian lattice gauge theories (Wegner models including the toric code in a limit) in general dimensions can be achieved by local adaptive measurements on symmetry-protected topological (SPT) states with higher-form generalized global symmetries. The entanglement structure of the resource SPT state reflects the geometric structure of the gauge theory. In this work, we explicitly demonstrate the anomaly inflow mechanism between the deconfining phase of the simulated gauge theory on the boundary and the SPT state in the bulk, by showing that the anomalous gauge variation of the boundary state obtained by bulk measurement matches that of the bulk theory. Moreover, we construct the resource state and the measurement pattern for the measurement-based quantum simulation of a lattice gauge theory with a matter field (Fradkin-Shenker model), where a simple scheme to protect gauge invariance of the simulated state against errors is proposed. We further consider taking an overlap between the wave function of the resource state for lattice gauge theories and that of a parameterized product state, and we derive precise dualities between partition functions with insertion of defects corresponding to gauging higher-form global symmetries, as well as measurement-induced phases where states induced by a partial overlap possess different (symmetry-protected) topological orders. Measurement-assisted operators to dualize quantum Hamiltonians of lattice gauge theories and their non-invertibility are also presented.
Related papers
- Entanglement and the density matrix renormalisation group in the generalised Landau paradigm [0.0]
We leverage the interplay between gapped phases and dualities of symmetric one-dimensional quantum lattice models.
For every phase in the phase diagram, the dual representation of the ground state that breaks all symmetries minimises both the entanglement entropy and the required number of variational parameters.
Our work testifies to the usefulness of generalised non-invertible symmetries and their formal category theoretic description for the nuts and bolts simulation of strongly correlated systems.
arXiv Detail & Related papers (2024-08-12T17:51:00Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Measuring Topological Field Theories: Lattice Models and Field-Theoretic
Description [2.541410020898643]
Recent years have witnessed a surge of interest in performing measurements within topological phases of matter.
We present a field-theoretic framework for describing measurements within topological field theories.
arXiv Detail & Related papers (2023-10-26T19:26:04Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum Computation of Thermal Averages for a Non-Abelian $D_4$ Lattice
Gauge Theory via Quantum Metropolis Sampling [0.0]
We show the application of the Quantum Metropolis Sampling (QMS) algorithm to a toy gauge theory with discrete non-Abelian gauge group $D_4$ in (2+1)-dimensions.
arXiv Detail & Related papers (2023-09-13T17:05:03Z) - Normalizing flows for lattice gauge theory in arbitrary space-time
dimension [135.04925500053622]
Applications of normalizing flows to the sampling of field configurations in lattice gauge theory have so far been explored almost exclusively in two space-time dimensions.
We discuss masked autoregressive with tractable and unbiased Jacobian determinants, a key ingredient for scalable and exact flow-based sampling algorithms.
For concreteness, results from a proof-of-principle application to SU(3) gauge theory in four space-time dimensions are reported.
arXiv Detail & Related papers (2023-05-03T19:54:04Z) - Measurement-based quantum simulation of Abelian lattice gauge theories [0.0]
We show that sequential single-qubit measurements with the bases adapted according to the former measurement outcomes induce a deterministic Hamiltonian quantum simulation of the gauge theory on the boundary.
We demonstrate that the generalized cluster state has a symmetry-protected topological order with respect to generalized global symmetries.
arXiv Detail & Related papers (2022-10-19T22:14:45Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Origin of staircase prethermalization in lattice gauge theories [0.0]
Quantum many-body systems with exact local gauge symmetries exhibit rich out-of-equilibrium physics.
We present evidence of textitstaircase prethermalization in a $mathrmZ$ lattice gauge theory.
arXiv Detail & Related papers (2020-04-15T18:00:08Z) - Tensor network models of AdS/qCFT [69.6561021616688]
We introduce the notion of a quasiperiodic conformal field theory (qCFT)
We show that qCFT can be best understood as belonging to a paradigm of discrete holography.
arXiv Detail & Related papers (2020-04-08T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.