論文の概要: Rethinking Machine Unlearning for Large Language Models
- arxiv url: http://arxiv.org/abs/2402.08787v1
- Date: Tue, 13 Feb 2024 20:51:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 17:44:32.322399
- Title: Rethinking Machine Unlearning for Large Language Models
- Title(参考訳): 大規模言語モデルのためのマシンアンラーニングの再考
- Authors: Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie
Baracaldo, Peter Hase, Xiaojun Xu, Yuguang Yao, Hang Li, Kush R. Varshney,
Mohit Bansal, Sanmi Koyejo, Yang Liu
- Abstract要約: 大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
- 参考スコア(独自算出の注目度): 89.99791628154274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore machine unlearning (MU) in the domain of large language models
(LLMs), referred to as LLM unlearning. This initiative aims to eliminate
undesirable data influence (e.g., sensitive or illegal information) and the
associated model capabilities, while maintaining the integrity of essential
knowledge generation and not affecting causally unrelated information. We
envision LLM unlearning becoming a pivotal element in the life-cycle management
of LLMs, potentially standing as an essential foundation for developing
generative AI that is not only safe, secure, and trustworthy, but also
resource-efficient without the need of full retraining. We navigate the
unlearning landscape in LLMs from conceptual formulation, methodologies,
metrics, and applications. In particular, we highlight the often-overlooked
aspects of existing LLM unlearning research, e.g., unlearning scope, data-model
interaction, and multifaceted efficacy assessment. We also draw connections
between LLM unlearning and related areas such as model editing, influence
functions, model explanation, adversarial training, and reinforcement learning.
Furthermore, we outline an effective assessment framework for LLM unlearning
and explore its applications in copyright and privacy safeguards and
sociotechnical harm reduction.
- Abstract(参考訳): LLMアンラーニングと呼ばれる大規模言語モデル(LLM)の領域における機械学習(MU)について検討する。
このイニシアチブは、本質的な知識生成の完全性を維持しつつ、因果関係のない情報に影響を与えないように、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
我々は、LLMのライフサイクル管理において、LLMのアンラーニングが重要な要素となり、安全で安全で信頼性の高いだけでなく、完全な再トレーニングを必要とせずに、資源効率の高い生成AIを開発する上で、不可欠な基盤となる可能性があると想定している。
概念的定式化や方法論,メトリクス,アプリケーションから,LLMにおける未学習の風景をナビゲートする。
特に,未学習スコープやデータモデルインタラクション,多面的有効性評価など,既存のllmアンラーニング研究の見過ごされがちな側面を強調する。
また,llmアンラーニングとモデル編集,影響関数,モデル説明,敵対的トレーニング,強化学習といった関連分野との関係についても考察した。
さらに,llmアンラーニングのための効果的な評価フレームワークを概説し,著作権保護やプライバシー保護,社会技術的被害軽減への応用について検討する。
関連論文リスト
- WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models [26.07431044262102]
本稿では,大規模言語モデル(LLM)におけるモデルウェイトと未学習プロセスの相互作用について考察する。
重みの「影響」と「影響」とを相互に関連付けることによって,重みの「影響」を記憶・保持するLLMアンラーニング手法であるWAGLEを設計する。
論文 参考訳(メタデータ) (2024-10-23T02:22:07Z) - When Machine Unlearning Meets Retrieval-Augmented Generation (RAG): Keep Secret or Forget Knowledge? [15.318301783084681]
大規模言語モデル(LLM)は、トレーニング中に機密情報や有害なコンテンツを不注意に学習し、保持することができる。
本稿では,RAG(Retrieval-Augmented Generation)技術に基づく軽量なアンラーニングフレームワークを提案する。
われわれはChatGPT, Gemini, Llama-2-7b-chat-hf, PaLM 2 など,オープンソースおよびクローズドソースモデルの広範な実験を通じてフレームワークを評価する。
論文 参考訳(メタデータ) (2024-10-20T03:51:01Z) - CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept [5.345828824625758]
コードブック機能とスパースオートエンコーダ(SAEs)を用いた新しいアンラーニング手法を提案する。
ボトルネックを利用して、アクティベーション空間を分解し、情報の流れを規制することにより、モデルの性能を無関係なデータに保ちながら、ターゲットとなる情報を効率的に解き放つ。
論文 参考訳(メタデータ) (2024-10-08T10:26:22Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - SNAP: Unlearning Selective Knowledge in Large Language Models with Negative Instructions [37.172662930947446]
命令追従型大規模言語モデル(LLM)は、個人または著作権のある情報を故意に開示する。
SNAPは,情報を選択的に学習するための革新的なフレームワークである。
我々は,NLPベンチマークにおけるフレームワークの評価を行い,提案手法が元のLLM能力を維持していることを示す。
論文 参考訳(メタデータ) (2024-06-18T06:54:05Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated Learning (FL)は、大規模言語モデル(LLM)をトレーニングするための魅力的なフレームワークを提供する
私たちは機械学習に重点を置いています。これは、忘れられる権利のようなプライバシー規則に従う上で重要な側面です。
摂動技術やモデル分解,漸進学習など,効果的なアンラーニングを可能にするさまざまな戦略を探求する。
論文 参考訳(メタデータ) (2024-06-14T08:40:58Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。