論文の概要: Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension
- arxiv url: http://arxiv.org/abs/2402.18048v1
- Date: Wed, 28 Feb 2024 04:56:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 16:13:31.397682
- Title: Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension
- Title(参考訳): 局所内在次元を持つ大規模言語モデル生成における真性の特徴
- Authors: Fan Yin, Jayanth Srinivasa, Kai-Wei Chang
- Abstract要約: 大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
- 参考スコア(独自算出の注目度): 63.330262740414646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study how to characterize and predict the truthfulness of texts generated
from large language models (LLMs), which serves as a crucial step in building
trust between humans and LLMs. Although several approaches based on entropy or
verbalized uncertainty have been proposed to calibrate model predictions, these
methods are often intractable, sensitive to hyperparameters, and less reliable
when applied in generative tasks with LLMs. In this paper, we suggest
investigating internal activations and quantifying LLM's truthfulness using the
local intrinsic dimension (LID) of model activations. Through experiments on
four question answering (QA) datasets, we demonstrate the effectiveness
ohttps://info.arxiv.org/help/prep#abstractsf our proposed method. Additionally,
we study intrinsic dimensions in LLMs and their relations with model layers,
autoregressive language modeling, and the training of LLMs, revealing that
intrinsic dimensions can be a powerful approach to understanding LLMs.
- Abstract(参考訳): 我々は,人間とLLMの信頼関係を構築する上で重要なステップとなる,大規模言語モデル(LLM)から生成したテキストの真偽を特徴づけ,予測する方法を研究する。
モデル予測のキャリブレーションにはエントロピーや言語的不確実性に基づくいくつかの手法が提案されているが、これらの手法はしばしば難解であり、ハイパーパラメータに敏感であり、LLMを用いた生成タスクに適用した場合の信頼性は低い。
本稿では,モデルアクティベーションの局所固有次元(LID)を用いて,内部アクティベーションを調査し,LLMの真偽を定量化する。
4つの質問応答(QA)データセットの実験を通じて,提案手法の有効性を実証した。
さらに, LLMの内在次元とモデル層との関係, 自己回帰言語モデリング, およびLLMの訓練について検討し, 内在次元がLLMを理解するための強力なアプローチであることを明らかにする。
関連論文リスト
- CogSteer: Cognition-Inspired Selective Layer Intervention for Efficient Semantic Steering in Large Language Models [22.42235251921268]
本研究では,眼球運動計測法を用いて,層間における大規模言語モデル(LLM)の振る舞いを解釈する。
これらの知見に触発され, ステアリング層選択を導入し, 微調整と推論による層間干渉法に適用した。
提案手法は, 計算資源の97%, トレーニング時間の60%を効率よく節約しつつ, 毒性スコアの点で優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-23T09:40:15Z) - Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
本稿では,マルコフ決定過程の動的状態を予測するために,事前学習した大規模言語モデルをどのように活用することができるかを検討する。
本稿では,モデルに基づく政策評価とデータ強化型オフ政治強化学習という2つの強化学習環境における概念実証の応用について述べる。
論文 参考訳(メタデータ) (2024-10-15T15:46:53Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
大規模言語モデル(LLM)は、人間の行動や認知過程をシミュレートするエキサイティングな可能性を開いた。
しかし, LLMを人体用スタンドインとして活用する妥当性は, いまだに不明である。
本稿では,モデルの出力に対する各プロンプト成分の相対的寄与を定量化するために,シェープリー値に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T22:49:43Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Pareto Optimal Learning for Estimating Large Language Model Errors [12.21899680905672]
大規模言語モデル(LLM)は多くのアプリケーションで印象的な能力を示している。
複数の情報ソースを統合することで,LSM応答における誤り確率を推定するリスクスコアを生成する手法を提案する。
論文 参考訳(メタデータ) (2023-06-28T21:11:15Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。