論文の概要: Intelligent Canvas: Enabling Design-Like Exploratory Visual Data Analysis with Generative AI through Rapid Prototyping, Iteration and Curation
- arxiv url: http://arxiv.org/abs/2402.08812v3
- Date: Thu, 21 Mar 2024 16:44:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 19:07:50.750768
- Title: Intelligent Canvas: Enabling Design-Like Exploratory Visual Data Analysis with Generative AI through Rapid Prototyping, Iteration and Curation
- Title(参考訳): Intelligent Canvas: 高速プロトタイピング、イテレーション、キュレーションによるジェネレーティブAIによるデザインライクな探索的ビジュアルデータ分析の実現
- Authors: Zijian Ding, Joel Chan,
- Abstract要約: 我々は、生成AIをデータ分析に組み込んだ「デザインライクな」インテリジェントキャンバス環境を導入する。
私たちの2つのコントリビューションには、生成可能なAIコンポーネントをキャンバスインターフェースに統合することや、ユーザスタディからの経験的な発見が含まれています。
- 参考スコア(独自算出の注目度): 4.7576896880194495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Complex data analysis inherently seeks unexpected insights through exploratory visual analysis methods, transcending logical, step-by-step processing. However, existing interfaces such as notebooks and dashboards have limitations in exploration and comparison for visual data analysis. Addressing these limitations, we introduce a "design-like" intelligent canvas environment integrating generative AI into data analysis, offering rapid prototyping, iteration, and comparative visualization management. Our dual contributions include the integration of generative AI components into a canvas interface, and empirical findings from a user study (N=10) evaluating the effectiveness of the canvas interface.
- Abstract(参考訳): 複雑なデータ分析は、本質的には、探索的視覚分析手法によって予期せぬ洞察を求め、論理的、段階的に処理する。
しかし、ノートやダッシュボードのような既存のインターフェースは、ビジュアルデータ分析の探索と比較に制限がある。
これらの制限に対処するために、生成AIをデータ分析に統合し、高速なプロトタイピング、イテレーション、および比較視覚化管理を提供する、“デザインライクな”インテリジェントキャンバス環境を導入します。
この2つのコントリビューションには、生成AIコンポーネントをキャンバスインターフェースに統合することや、キャンバスインターフェースの有効性を評価するユーザスタディ(N=10)による経験的発見が含まれている。
関連論文リスト
- Instance-Aware Graph Prompt Learning [71.26108600288308]
本稿では,インスタンス対応グラフプロンプト学習(IA-GPL)について紹介する。
このプロセスでは、軽量アーキテクチャを使用して各インスタンスの中間プロンプトを生成する。
複数のデータセットと設定で実施された実験は、最先端のベースラインと比較して、IA-GPLの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-26T18:38:38Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - generAItor: Tree-in-the-Loop Text Generation for Language Model
Explainability and Adaptation [28.715001906405362]
大規模言語モデル(LLM)は、自動補完、補助的な書き込み、チャットベースのテキスト生成など、様々な下流タスクに広くデプロイされている。
本稿では,ビーム探索ツリーの視覚的表現を解析,説明,適応する中心的な要素とする,ループ内ツリーのアプローチを提案することで,この欠点に対処する。
視覚解析技術であるGenerAItorを,タスク固有のウィジェットで中央ビーム探索木を拡大し,ターゲットとした可視化とインタラクションの可能性を提供する。
論文 参考訳(メタデータ) (2024-03-12T13:09:15Z) - LangXAI: Integrating Large Vision Models for Generating Textual
Explanations to Enhance Explainability in Visual Perception Tasks [2.5966310291726007]
LangXAIは、説明可能な人工知能(XAI)と高度な視覚モデルを統合して、視覚認識タスクの説明を生成するフレームワークである。
LangXAIはこれを、分類、オブジェクト検出、セマンティックセグメンテーションモデルの出力をエンドユーザーに提供することによって解決する。
予備的な結果は、タスク間でBERTScoreの高いLangXAIの強化された可視性を示している。
論文 参考訳(メタデータ) (2024-02-19T20:36:32Z) - SeeBel: Seeing is Believing [0.9790236766474201]
本稿では,全画像のセグメンテーションにおけるデータセット統計とAI性能を比較するための3つの可視化手法を提案する。
我々のプロジェクトは、画像の注意重みを可視化することで、セグメンテーションのための訓練されたAIモデルの解釈可能性をさらに高めようとしている。
我々は,コンピュータビジョンとAI領域における可視化ツールの有効性を検討するために,実際のユーザを対象に調査を行うことを提案する。
論文 参考訳(メタデータ) (2023-12-18T05:11:00Z) - RLIP: Relational Language-Image Pre-training for Human-Object
Interaction Detection [32.20132357830726]
言語画像事前学習(Language- Image Pre-Training、LIPR)は、エンティティと関係記述の両方を活用するコントラスト事前学習の戦略である。
RLIP-ParSeと呼ばれるこれらのコントリビューションの利点は、ゼロショット、少数ショット、微調整のHOI検出の改善、およびノイズアノテーションからの堅牢性の向上である。
論文 参考訳(メタデータ) (2022-09-05T07:50:54Z) - A Unified Comparison of User Modeling Techniques for Predicting Data
Interaction and Detecting Exploration Bias [17.518601254380275]
我々は,4つのユーザスタディデータセットの多種多様なセットにおいて,その性能に基づいて8つのユーザモデリングアルゴリズムを比較し,ランク付けする。
本研究は,ユーザインタラクションの分析と可視化のためのオープンな課題と新たな方向性を強調した。
論文 参考訳(メタデータ) (2022-08-09T19:51:10Z) - A Variational Information Bottleneck Approach to Multi-Omics Data
Integration [98.6475134630792]
本稿では,不完全な多視点観測のための深い変動情報ボトルネック (IB) 手法を提案する。
本手法は,対象物に関連のある視点内および視点間相互作用に焦点をあてるために,観測された視点の辺縁および結合表現にISBフレームワークを適用した。
実世界のデータセットの実験から、我々の手法はデータ統合から常に利益を得て、最先端のベンチマークより優れています。
論文 参考訳(メタデータ) (2021-02-05T06:05:39Z) - Synbols: Probing Learning Algorithms with Synthetic Datasets [112.45883250213272]
Synbolsは、低解像度画像にレンダリングされた潜在機能のリッチな構成で、新しいデータセットを高速に生成するツールである。
ツールの高レベルインターフェースは、潜在機能で新しいディストリビューションを高速に生成するための言語を提供する。
Synbolsの汎用性を示すために,各種学習環境における標準学習アルゴリズムの限界と欠陥を識別するために,本手法を用いる。
論文 参考訳(メタデータ) (2020-09-14T13:03:27Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。