論文の概要: Understanding Generative AI Content with Embedding Models
- arxiv url: http://arxiv.org/abs/2408.10437v3
- Date: Sat, 22 Feb 2025 18:56:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 22:36:55.452781
- Title: Understanding Generative AI Content with Embedding Models
- Title(参考訳): 埋め込みモデルによる生成AIコンテンツ理解
- Authors: Max Vargas, Reilly Cannon, Andrew Engel, Anand D. Sarwate, Tony Chiang,
- Abstract要約: ディープニューラルネットワーク(DNN)は、入力データを埋め込みと呼ばれる隠れた特徴ベクトルに変換することによって、機能を暗黙的に設計する。
実検体と人工知能(AI)が生み出すものの間に本質的な分離性が存在するという実証的証拠が見つかる。
- 参考スコア(独自算出の注目度): 4.662332573448995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constructing high-quality features is critical to any quantitative data analysis. While feature engineering was historically addressed by carefully hand-crafting data representations based on domain expertise, deep neural networks (DNNs) now offer a radically different approach. DNNs implicitly engineer features by transforming their input data into hidden feature vectors called embeddings. For embedding vectors produced by foundation models -- which are trained to be useful across many contexts -- we demonstrate that simple and well-studied dimensionality-reduction techniques such as Principal Component Analysis uncover inherent heterogeneity in input data concordant with human-understandable explanations. Of the many applications for this framework, we find empirical evidence that there is intrinsic separability between real samples and those generated by artificial intelligence (AI).
- Abstract(参考訳): 高品質な機能の構築は、あらゆる定量的データ分析に不可欠である。
機能エンジニアリングは歴史的にドメインの専門知識に基づいたデータ表現を慎重に手作りすることで対処されてきたが、ディープニューラルネットワーク(DNN)は現在、根本的に異なるアプローチを提供している。
DNNは、入力データを埋め込みと呼ばれる隠れた特徴ベクトルに変換することで、機能を暗黙的に設計する。
基礎モデルが生成するベクトル(多くの文脈で有用であるように訓練された)の埋め込みについて、主成分分析のような単純でよく研究された次元性推論技術が、人間の理解可能な説明と一致した入力データに固有の不均一性を明らかにすることを実証する。
このフレームワークの多くの応用例のうち、実際のサンプルと人工知能(AI)が生み出すものの間に本質的な分離性が存在するという実証的な証拠を見出した。
関連論文リスト
- DSAI: Unbiased and Interpretable Latent Feature Extraction for Data-Centric AI [24.349800949355465]
大規模言語モデル(LLM)は、大きなデータセットの潜在特性を客観的に識別するのにしばしば苦労する。
本研究では,非バイアスで解釈可能な特徴抽出を可能にするフレームワークであるData Scientist AI(DSAI)を提案する。
論文 参考訳(メタデータ) (2024-12-09T08:47:05Z) - Preserving Information: How does Topological Data Analysis improve Neural Network performance? [0.0]
本稿では,画像認識におけるトポロジカルデータ解析(TDA)と畳み込みニューラルネットワーク(CNN)の統合手法を提案する。
我々のアプローチは、ベクトルスチッチ(Vector Stitching)と呼ばれ、生画像データと追加のトポロジ情報を組み合わせたものである。
実験の結果は,追加データ解析の結果をネットワークの推論プロセスに組み込むことの可能性を強調した。
論文 参考訳(メタデータ) (2024-11-27T14:56:05Z) - AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - The Extrapolation Power of Implicit Models [2.3526338188342653]
暗黙のモデルは、アウト・オブ・ディストリビューション、地理的、時間的シフトといった様々な外挿シナリオでテストに投入される。
我々の実験は暗黙のモデルで常に大きな性能上の優位性を証明している。
論文 参考訳(メタデータ) (2024-07-19T16:01:37Z) - Towards Explainable Artificial Intelligence (XAI): A Data Mining
Perspective [35.620874971064765]
この研究は、データ収集、処理、分析が説明可能なAI(XAI)にどのように貢献するかを「データ中心」の視点で検証する。
我々は,既存の研究を,深層モデルの解釈,トレーニングデータの影響,ドメイン知識の洞察の3つのカテゴリに分類する。
具体的には、XAIの方法論を、モダリティをまたいだデータのトレーニングおよびテストに関するデータマイニング操作に蒸留する。
論文 参考訳(メタデータ) (2024-01-09T06:27:09Z) - Breaking the Curse of Dimensionality in Deep Neural Networks by Learning
Invariant Representations [1.9580473532948401]
この論文は、これらのモデルのアーキテクチャとそれらが処理するデータ内の固有の構造との関係を研究することによって、ディープラーニングの理論的基礎を探求する。
ディープラーニングアルゴリズムの有効性を駆動するものは何か,いわゆる次元の呪いに勝てるのか,と問う。
本手法は,実験的な研究と物理に触発された玩具モデルを組み合わせることによって,深層学習に実証的なアプローチをとる。
論文 参考訳(メタデータ) (2023-10-24T19:50:41Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Homological Convolutional Neural Networks [4.615338063719135]
本稿では,トポロジ的に制約されたネットワーク表現を通じて,データ構造構造を利用した新しいディープラーニングアーキテクチャを提案する。
5つの古典的な機械学習モデルと3つのディープラーニングモデルに対して、18のベンチマークデータセットでモデルをテストします。
論文 参考訳(メタデータ) (2023-08-26T08:48:51Z) - Metric Tools for Sensitivity Analysis with Applications to Neural
Networks [0.0]
説明可能な人工知能(XAI)は、機械学習モデルによる予測の解釈を提供することを目的としている。
本稿では,計量手法を用いてMLモデルの感性を研究するための理論的枠組みを提案する。
$alpha$-curvesと呼ばれる新しいメトリクスの完全なファミリーが抽出される。
論文 参考訳(メタデータ) (2023-05-03T18:10:21Z) - Persistence-based operators in machine learning [62.997667081978825]
永続性に基づくニューラルネットワークレイヤのクラスを導入します。
永続化ベースのレイヤにより、ユーザは、データによって尊重される対称性に関する知識を容易に注入でき、学習可能なウェイトを備え、最先端のニューラルネットワークアーキテクチャで構成できる。
論文 参考訳(メタデータ) (2022-12-28T18:03:41Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
トポロジカル・データ解析は、複雑な構造のコンパクトでノイズ・ロバストな表現を提供する。
ディープニューラルネットワーク(DNN)は、モデルアーキテクチャによって定義された一連の変換に関連する数百万のパラメータを学習する。
本稿では,画像分類に使用される畳み込みニューラルネットワークの解釈可能性に関する知見を得る目的で,TDAの最先端技術を適用した。
論文 参考訳(メタデータ) (2022-12-01T02:05:44Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Discrete-Valued Neural Communication [85.3675647398994]
コンポーネント間で伝達される情報を離散表現に制限することは、有益なボトルネックであることを示す。
個人は「猫」が特定の経験に基づいて何であるかについて異なる理解を持っているが、共有された離散トークンは、個人間のコミュニケーションが内部表現の個人差によって切り離されることを可能にする。
我々は、量子化機構をベクトル量子化変分オートコーダから共有符号ブックによる多頭部離散化に拡張し、離散値ニューラル通信に利用する。
論文 参考訳(メタデータ) (2021-07-06T03:09:25Z) - i-Algebra: Towards Interactive Interpretability of Deep Neural Networks [41.13047686374529]
i-Algebraはディープニューラルネットワーク(DNN)を解釈するための対話型フレームワークである。
その中核は原子、構成可能な演算子のライブラリであり、さまざまな入力粒度、異なる推論段階、および異なる解釈の視点からモデル挙動を説明する。
我々は,敵入力の検査,モデル不整合の解消,汚染データのクリーン化など,一連の代表的分析タスクでユーザ研究を行い,その有望なユーザビリティを示す。
論文 参考訳(メタデータ) (2021-01-22T19:22:57Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。