Intelligent Agricultural Management Considering N$_2$O Emission and
Climate Variability with Uncertainties
- URL: http://arxiv.org/abs/2402.08832v1
- Date: Tue, 13 Feb 2024 22:29:40 GMT
- Title: Intelligent Agricultural Management Considering N$_2$O Emission and
Climate Variability with Uncertainties
- Authors: Zhaoan Wang, Shaoping Xiao, Jun Wang, Ashwin Parab, Shivam Patel
- Abstract summary: This study examines how artificial intelligence (AI) can be used in farming to boost crop yields, fine-tune use and watering, and reduce nitrate runoff and greenhouse gases.
Facing climate change and limited agricultural knowledge, we use Partially Observable Markov Decision Processes (POMDPs) with a crop simulator to model AI agents' interactions with farming environments.
Also, we develop Machine Learning (ML) models to predict N$$O emissions, integrating these predictions into the simulator.
- Score: 5.04035338843957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study examines how artificial intelligence (AI), especially
Reinforcement Learning (RL), can be used in farming to boost crop yields,
fine-tune nitrogen use and watering, and reduce nitrate runoff and greenhouse
gases, focusing on Nitrous Oxide (N$_2$O) emissions from soil. Facing climate
change and limited agricultural knowledge, we use Partially Observable Markov
Decision Processes (POMDPs) with a crop simulator to model AI agents'
interactions with farming environments. We apply deep Q-learning with Recurrent
Neural Network (RNN)-based Q networks for training agents on optimal actions.
Also, we develop Machine Learning (ML) models to predict N$_2$O emissions,
integrating these predictions into the simulator. Our research tackles
uncertainties in N$_2$O emission estimates with a probabilistic ML approach and
climate variability through a stochastic weather model, offering a range of
emission outcomes to improve forecast reliability and decision-making. By
incorporating climate change effects, we enhance agents' climate adaptability,
aiming for resilient agricultural practices. Results show these agents can
align crop productivity with environmental concerns by penalizing N$_2$O
emissions, adapting effectively to climate shifts like warmer temperatures and
less rain. This strategy improves farm management under climate change,
highlighting AI's role in sustainable agriculture.
Related papers
- GreenLight-Gym: A Reinforcement Learning Benchmark Environment for Greenhouse Crop Production Control [0.0]
Reinforcement Learning (RL) is a promising approach that can learn a control policy to automate greenhouse management.
We present GreenLight-Gym, the first open-source environment designed for training and evaluating RL algorithms on the state-of-the-art greenhouse model GreenLight.
Second, we compare two reward-shaping approaches, using either a multiplicative or additive penalty, to enforce state boundaries.
Third, we evaluate RL performance on a disjoint training and testing weather dataset, demonstrating improved generalisation to unseen conditions.
arXiv Detail & Related papers (2024-10-06T18:25:23Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
We evaluate the CO2 emissions of well-known large language models, which have an especially high carbon footprint due to their significant amount of model parameters.
We argue for the training of LLMs in a way that is responsible and sustainable by suggesting measures for reducing carbon emissions.
arXiv Detail & Related papers (2024-04-01T15:01:45Z) - Learning-based agricultural management in partially observable
environments subject to climate variability [5.5062239803516615]
Agricultural management holds a central role in shaping crop yield, economic profitability, and environmental sustainability.
We introduce an innovative framework that integrates Deep Reinforcement Learning (DRL) with Recurrent Neural Networks (RNNs)
Our study illuminates the need for agent retraining to acquire new optimal policies under extreme weather events.
arXiv Detail & Related papers (2024-01-02T16:18:53Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - DeepG2P: Fusing Multi-Modal Data to Improve Crop Production [1.7406327893433846]
We present a Natural Language Processing-based neural network architecture to process the G, E and M inputs and their interactions.
We show that by modeling DNA as natural language, our approach performs better than previous approaches when tested for new environments.
arXiv Detail & Related papers (2022-11-11T03:32:44Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - IGrow: A Smart Agriculture Solution to Autonomous Greenhouse Control [8.344829083719857]
We propose a smart agriculture solution, namely iGrow.
We use IoT and cloud computing technologies to measure, collect, and manage growing data.
Our solution significantly increases production (commercially sellable fruits) and net profit.
arXiv Detail & Related papers (2021-07-06T11:35:50Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.