論文の概要: Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation
- arxiv url: http://arxiv.org/abs/2402.08845v2
- Date: Tue, 21 May 2024 14:14:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 18:31:52.025815
- Title: Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation
- Title(参考訳): 因果説明のための2段階摂動試験による必要十分性および十分性に寄与する特徴
- Authors: Xuexin Chen, Ruichu Cai, Zhengting Huang, Yuxuan Zhu, Julien Horwood, Zhifeng Hao, Zijian Li, Jose Miguel Hernandez-Lobato,
- Abstract要約: FAM(Feature Attribution Methods)は摂動テストを通じて各特徴の寄与を測定する。
本稿では,その変化を予測するためには,特徴の摂動が必須かつ十分な原因である,必要十分・十分性の確率(PNS)を活用することを提案する。
我々のアプローチであるFANS(Feature Attribution with Necessity and Sufficiency)は,2段階(実と介入)を含む摂動テストを通じてPSNを計算する。
- 参考スコア(独自算出の注目度): 18.485632810973122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the problem of explainability in machine learning. To address this problem, Feature Attribution Methods (FAMs) measure the contribution of each feature through a perturbation test, where the difference in prediction is compared under different perturbations. However, such perturbation tests may not accurately distinguish the contributions of different features, when their change in prediction is the same after perturbation. In order to enhance the ability of FAMs to distinguish different features' contributions in this challenging setting, we propose to utilize the Probability of Necessity and Sufficiency (PNS) that perturbing a feature is a necessary and sufficient cause for the prediction to change as a measure of feature importance. Our approach, Feature Attribution with Necessity and Sufficiency (FANS), computes the PNS via a perturbation test involving two stages (factual and interventional). In practice, to generate counterfactual samples, we use a resampling-based approach on the observed samples to approximate the required conditional distribution. We demonstrate that FANS outperforms existing attribution methods on six benchmarks. Our source code is available at \url{https://github.com/DMIRLAB-Group/FANS}.
- Abstract(参考訳): 機械学習における説明可能性の問題について検討する。
この問題を解決するために、FAM(Feature Attribution Methods)は摂動テストを通じて各特徴の寄与を測定する。
しかし、このような摂動試験は、摂動後の予測が同じである場合、異なる特徴の寄与を正確に区別するものではない。
本研究は,FAMが様々な特徴のコントリビューションを識別する能力を高めるために,特徴の摂動が特徴の重要度を測る上で必要かつ十分な原因であることを示すPNS(Probability of Necessity and Sufficiency)を活用することを提案する。
当社のアプローチであるFANS(Feature Attribution with Necessity and Sufficiency)は,2段階(実効と介入)の摂動テストを通じてPSNを計算する。
実例では, 実例を再現する手法を用いて, 必要な条件分布を近似する。
FANSは6つのベンチマークで既存の属性法よりも優れていることを示す。
ソースコードは \url{https://github.com/DMIRLAB-Group/FANS} で公開されています。
関連論文リスト
- Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Evaluation of Active Feature Acquisition Methods for Static Feature
Settings [6.645033437894859]
能動機能取得性能評価のための半オフライン強化学習フレームワーク(AFAPE)を提案する。
本稿では,AFAPE問題を時間不変な静的な特徴設定に適用し,拡張する。
半オフラインRLフレームワーク内の新しい逆確率重み付け(IPW)、直接法(DM)、二重強化学習(DRL)推定器を導出し、適応する。
論文 参考訳(メタデータ) (2023-12-06T17:07:42Z) - Transductive conformal inference with adaptive scores [3.591224588041813]
トランスダクティブな設定では、テストのサンプルとして$m$の新たなポイントが決定されます。
本研究はP'olya urnモデルに従い, 実験分布関数の濃度不等式を確立することを目的とする。
本研究では,2つの機械学習タスクに対して一様かつ不確率な保証を行うことにより,これらの理論的結果の有用性を示す。
論文 参考訳(メタデータ) (2023-10-27T12:48:30Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling [77.15766509677348]
条件生成モデルは、トレーニングデータセットから急激な相関を継承することが多い。
これは別の潜在属性に対して不均衡なラベル条件分布をもたらす。
この問題を緩和するための一般的な2段階戦略を提案する。
論文 参考訳(メタデータ) (2022-12-05T08:09:33Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
適応次元の削減によりさらに改善された変分ベイズ推定に基づく新しいクラスタリング法を提案する。
提案手法は,Few-Shotベンチマークにおける現実的非バランスなトランスダクティブ設定の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-09-18T10:29:02Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z) - Attention-based Neural Bag-of-Features Learning for Sequence Data [143.62294358378128]
2D-Attention (2DA) は、シーケンスデータの一般的なアテンション定式化である。
提案したアテンションモジュールは、最近提案されたNeural Bag of Feature(NBoF)モデルに組み込まれ、学習能力を高める。
実験により,提案手法はNBoFモデルの性能を向上させるだけでなく,ノイズに耐性を持つことを示す。
論文 参考訳(メタデータ) (2020-05-25T17:51:54Z) - Feature Quantization Improves GAN Training [126.02828112121874]
識別器の特徴量子化(FQ)は、真と偽のデータの両方を共有離散空間に埋め込む。
本手法は,既存のGANモデルに容易に接続でき,訓練における計算オーバーヘッドがほとんどない。
論文 参考訳(メタデータ) (2020-04-05T04:06:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。