Noise estimation in an entanglement distillation protocol
- URL: http://arxiv.org/abs/2402.08928v1
- Date: Wed, 14 Feb 2024 04:03:20 GMT
- Title: Noise estimation in an entanglement distillation protocol
- Authors: Ananda G. Maity, Joshua C. A. Casapao, Naphan Benchasattabuse, Michal
Hajdu\v{s}ek, Rodney Van Meter, David Elkouss
- Abstract summary: Estimating noise processes is an essential step for practical quantum information processing.
We consider states of the Werner form and find that the Werner parameter can be estimated efficiently from the measurement statistics of an idealized distillation protocol.
- Score: 0.3958317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating noise processes is an essential step for practical quantum
information processing. Standard estimation tools require consuming valuable
quantum resources. Here we ask the question of whether the noise affecting
entangled states can be learned solely from the measurement statistics obtained
during a distillation protocol. As a first step, we consider states of the
Werner form and find that the Werner parameter can be estimated efficiently
from the measurement statistics of an idealized distillation protocol. Our
proposed estimation method can find application in scenarios where distillation
is an unavoidable step.
Related papers
- Surpassing the fundamental limits of distillation with catalysts [2.107610564835429]
We show that quantum catalysts can help surpass previously known fundamental limitations on distillation overhead.
In particular, in context of magic state distillation, our result indicates that the code-based low-overhead distillation protocols can be promoted to the one-shot setting.
We demonstrate that enables a spacetime trade-off between overhead and success probability.
arXiv Detail & Related papers (2024-10-18T15:41:52Z) - Disti-Mator: an entanglement distillation-based state estimator [0.3769303106863453]
Minimizing experimental effort and consumption of valuable quantum resources in state estimation is vital in practical quantum information processing.
We show that the Bell-diagonal parameters of any undistilled state can be efficiently estimated solely from the measurement statistics of probabilistic distillation protocols.
arXiv Detail & Related papers (2024-06-20T02:10:04Z) - Purification of Noisy Measurements and Faithful Distillation of Entanglement [8.525175733082781]
We present a protocol for purifying noisy measurements and show that with the help of the purification, imperfect local operations can be used to distill entanglement.
We show that the purification protocol is robust against noise in implementation and analyze the purification in a practical realization.
arXiv Detail & Related papers (2024-04-16T13:07:09Z) - Modeling State Shifting via Local-Global Distillation for Event-Frame Gaze Tracking [61.44701715285463]
This paper tackles the problem of passive gaze estimation using both event and frame data.
We reformulate gaze estimation as the quantification of the state shifting from the current state to several prior registered anchor states.
To improve the generalization ability, instead of learning a large gaze estimation network directly, we align a group of local experts with a student network.
arXiv Detail & Related papers (2024-03-31T03:30:37Z) - Fidelity estimation of quantum states on a silicon photonic chip [0.03078691410268859]
We adapt a previously reported optimal state verification protocol (Phys. Rev. Lett. 120, 170502) for fidelity estimation of two-qubit states.
We demonstrate the protocol experimentally using a fully-programmable silicon photonic two-qubit chip.
arXiv Detail & Related papers (2023-06-01T18:16:33Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
We present a minimax lower bound on the discounted mean estimation problem.
We show that estimating the mean by directly sampling from the discounted kernel of the Markov process brings compelling statistical properties.
arXiv Detail & Related papers (2023-04-11T09:13:17Z) - Virtual quantum resource distillation [0.29998889086656577]
Distillation, or purification, is central to the practical use of quantum resources in noisy settings.
We show that virtual resource distillation provides considerable advantages over standard notions of distillation.
We consider applications to coherence, entanglement, and magic distillation, and an explicit example in quantum teleportation.
arXiv Detail & Related papers (2023-03-02T04:15:52Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Experimental Bayesian calibration of trapped ion entangling operations [48.43720700248091]
We develop and characterize an efficient calibration protocol to automatically estimate and adjust experimental parameters of the widely used Molmer-Sorensen entangling gate operation.
We experimentally demonstrate a median gate infidelity of $1.3(1)cdot10-3$, requiring only $1200pm500$ experimental cycles, while completing the entire gate calibration procedure in less than one minute.
arXiv Detail & Related papers (2021-12-02T16:59:00Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.