Disti-Mator: an entanglement distillation-based state estimator
- URL: http://arxiv.org/abs/2406.13937v2
- Date: Fri, 19 Jul 2024 07:45:25 GMT
- Title: Disti-Mator: an entanglement distillation-based state estimator
- Authors: Joshua Carlo A. Casapao, Ananda G. Maity, Naphan Benchasattabuse, Michal HajduĊĦek, Rodney Van Meter, David Elkouss,
- Abstract summary: Minimizing experimental effort and consumption of valuable quantum resources in state estimation is vital in practical quantum information processing.
We show that the Bell-diagonal parameters of any undistilled state can be efficiently estimated solely from the measurement statistics of probabilistic distillation protocols.
- Score: 0.3769303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Minimizing both experimental effort and consumption of valuable quantum resources in state estimation is vital in practical quantum information processing. Here, we explore characterizing states as an additional benefit of the entanglement distillation protocols. We show that the Bell-diagonal parameters of any undistilled state can be efficiently estimated solely from the measurement statistics of probabilistic distillation protocols. We further introduce the state estimator `Disti-Mator' designed specifically for a realistic experimental setting, and exhibit its robustness through numerical simulations. Our results demonstrate that a separate estimation protocol can be circumvented whenever distillation is an indispensable communication-based task.
Related papers
- A Novel Stabilizer-based Entanglement Distillation Protocol for Qudits [0.016385815610837167]
Entanglement distillation is pivotal for robust quantum information processing in error-prone environments.
A construction based on stabilizer codes offers an effective method for designing such protocols.
We present a novel two-copy distillation protocol that maximizes the fidelity increase per iteration for Bell-diagonal states in any prime dimension.
arXiv Detail & Related papers (2024-08-05T11:14:28Z) - Noise estimation in an entanglement distillation protocol [0.3958317527488534]
Estimating noise processes is an essential step for practical quantum information processing.
We consider states of the Werner form and find that the Werner parameter can be estimated efficiently from the measurement statistics of an idealized distillation protocol.
arXiv Detail & Related papers (2024-02-14T04:03:20Z) - Experimental virtual distillation of entanglement and coherence [9.044989082921102]
We show the virtual distillation of the maximal superposed state of dimension four from the state of dimension two.
We also demonstrate the virtual distillation of entanglement with operations acting only on a single copy of the noisy EPR pair.
arXiv Detail & Related papers (2023-11-16T13:03:34Z) - Fidelity estimation of quantum states on a silicon photonic chip [0.03078691410268859]
We adapt a previously reported optimal state verification protocol (Phys. Rev. Lett. 120, 170502) for fidelity estimation of two-qubit states.
We demonstrate the protocol experimentally using a fully-programmable silicon photonic two-qubit chip.
arXiv Detail & Related papers (2023-06-01T18:16:33Z) - Virtual quantum resource distillation [0.29998889086656577]
Distillation, or purification, is central to the practical use of quantum resources in noisy settings.
We show that virtual resource distillation provides considerable advantages over standard notions of distillation.
We consider applications to coherence, entanglement, and magic distillation, and an explicit example in quantum teleportation.
arXiv Detail & Related papers (2023-03-02T04:15:52Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Robustness in Fatigue Strength Estimation [61.85933973929947]
In this paper, we examine a modular, Machine Learning-based approach for fatigue strength estimation.
Despite its high potential, deployment of a new approach in a real-life lab requires more than the theoretical definition and simulation.
We identify its applicability and its advantageous behavior over the state-of-the-art methods, potentially reducing the number of costly experiments.
arXiv Detail & Related papers (2022-12-02T12:30:29Z) - Quantum state tomography with tensor train cross approximation [84.59270977313619]
We show that full quantum state tomography can be performed for such a state with a minimal number of measurement settings.
Our method requires exponentially fewer state copies than the best known tomography method for unstructured states and local measurements.
arXiv Detail & Related papers (2022-07-13T17:56:28Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.