Fidelity estimation of quantum states on a silicon photonic chip
- URL: http://arxiv.org/abs/2306.01068v3
- Date: Fri, 16 Jun 2023 09:12:17 GMT
- Title: Fidelity estimation of quantum states on a silicon photonic chip
- Authors: Sabine Wollmann, Xiaogang Qiang, Sam Pallister, Ashley Montanaro, Noah
Linden, and Jonathan C.F. Matthews
- Abstract summary: We adapt a previously reported optimal state verification protocol (Phys. Rev. Lett. 120, 170502) for fidelity estimation of two-qubit states.
We demonstrate the protocol experimentally using a fully-programmable silicon photonic two-qubit chip.
- Score: 0.03078691410268859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a measure of the 'closeness' of two quantum states, fidelity plays a
fundamental role in quantum information theory. Fidelity estimation protocols
try to strike a balance between information gleaned from an experiment, and the
efficiency of its implementation, in terms of the number of states consumed by
the protocol. Here we adapt a previously reported optimal state verification
protocol (Phys. Rev. Lett. 120, 170502, 2018) for fidelity estimation of
two-qubit states. We demonstrate the protocol experimentally using a
fully-programmable silicon photonic two-qubit chip. Our protocol outputs
significantly smaller error bars of its point estimate in comparison with
another widely-used estimation protocol, showing a clear step forward in the
ability to estimate the fidelity of quantum states produced by a practical
device.
Related papers
- A Novel Stabilizer-based Entanglement Distillation Protocol for Qudits [0.016385815610837167]
Entanglement distillation is pivotal for robust quantum information processing in error-prone environments.
A construction based on stabilizer codes offers an effective method for designing such protocols.
We present a novel two-copy distillation protocol that maximizes the fidelity increase per iteration for Bell-diagonal states in any prime dimension.
arXiv Detail & Related papers (2024-08-05T11:14:28Z) - Performance of entanglement purification including maximally entangled mixed states [0.0]
Entanglement between distant quantum systems is a critical resource for implementing quantum communication.
We propose an entanglement purification protocol based on two entangling two-qubit operations.
Two variants of the core protocol are introduced and shown to be more practical in certain scenarios.
arXiv Detail & Related papers (2024-02-06T18:34:34Z) - Testing quantum computers with the protocol of quantum state matching [0.0]
The presence of noise in quantum computers hinders their effective operation.
We suggest the application of the so-called quantum state matching protocol for testing purposes.
For systematically varied inputs we find that the device with the smaller quantum volume performs better on our tests than the one with larger quantum volume.
arXiv Detail & Related papers (2022-10-18T08:25:34Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Dynamical learning of a photonics quantum-state engineering process [48.7576911714538]
Experimentally engineering high-dimensional quantum states is a crucial task for several quantum information protocols.
We implement an automated adaptive optimization protocol to engineer photonic Orbital Angular Momentum (OAM) states.
This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.
arXiv Detail & Related papers (2022-01-14T19:24:31Z) - Efficient Verification of Boson Sampling Using a Quantum Computer [0.0]
We use the protocols given in the paper [arXiv:2006.03520] to construct a boson sampling experiment using discrete quantum states on IBM quantum computer.
We demonstrate the protocols for single mode fidelity estimation, multi mode fidelity estimation and a verification protocol using IBMQ "athens" chip.
arXiv Detail & Related papers (2021-08-09T11:41:15Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Two-party quantum private comparison based on eight-qubit entangled
state [0.7130302992490973]
The purpose of quantum private comparison (QPC) is to solve "Tierce problem" using quantum mechanics laws.
We consider for the first time the usefulness of eight-qubit entangled states for QPC by proposing a new protocol.
arXiv Detail & Related papers (2021-01-05T12:07:45Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.