論文の概要: Variance Reduction and Low Sample Complexity in Stochastic Optimization
via Proximal Point Method
- arxiv url: http://arxiv.org/abs/2402.08992v1
- Date: Wed, 14 Feb 2024 07:34:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 16:32:01.062543
- Title: Variance Reduction and Low Sample Complexity in Stochastic Optimization
via Proximal Point Method
- Title(参考訳): 近点法による確率最適化におけるばらつき低減と低サンプル複雑度
- Authors: Jiaming Liang
- Abstract要約: 本論文は,提案手法の収束性に関する高い確率保証を得るために,低サンプリング複雑性を確立する。
近位サブプロブレムを解くためにサブルーチンが開発され、分散還元のための新しい技術としても機能する。
- 参考スコア(独自算出の注目度): 5.025654873456757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a stochastic proximal point method to solve a stochastic
convex composite optimization problem. High probability results in stochastic
optimization typically hinge on restrictive assumptions on the stochastic
gradient noise, for example, sub-Gaussian distributions. Assuming only weak
conditions such as bounded variance of the stochastic gradient, this paper
establishes a low sample complexity to obtain a high probability guarantee on
the convergence of the proposed method. Additionally, a notable aspect of this
work is the development of a subroutine to solve the proximal subproblem, which
also serves as a novel technique for variance reduction.
- Abstract(参考訳): 本稿では,確率凸合成最適化問題を解くための確率的近位点法を提案する。
確率的最適化の確率的結果は通常、確率的勾配ノイズ(例えば準ゲージ分布)の制限的な仮定にかかっている。
本稿では,確率勾配の有界分散などの弱い条件のみを仮定し,提案手法の収束に関する高い確率保証を得るために,低サンプリングの複雑さを確立する。
さらに、この研究の注目すべき点は、近位部分問題を解くためのサブルーチンの開発である。
関連論文リスト
- A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - On the Stochastic (Variance-Reduced) Proximal Gradient Method for Regularized Expected Reward Optimization [10.36447258513813]
我々は、強化学習(RL)における既存の問題の多くを網羅する非文献設定における正規化期待報酬最適化問題を考える。
特に、標準条件下では、$O(epsilon-4)$サンプルを$epsilon$-stationaryポイントに含めることが示されている。
分析の結果,サンプルの複雑さは,追加条件下では$O(epsilon-4)$から$O(epsilon-3)$に改善できることがわかった。
論文 参考訳(メタデータ) (2024-01-23T06:01:29Z) - High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise [96.80184504268593]
グラデーション、クリッピングは、優れた高確率保証を導き出すアルゴリズムの鍵となる要素の1つである。
クリッピングは、合成および分散最適化の一般的な方法の収束を損なう可能性がある。
論文 参考訳(メタデータ) (2023-10-03T07:49:17Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
制約の少ない仮定の下で高確率収束結果のアルゴリズムを提案する。
これらの結果は、標準機能クラスに適合しない問題を最適化するために検討された手法の使用を正当化する。
論文 参考訳(メタデータ) (2023-02-02T10:37:23Z) - A Semismooth Newton Stochastic Proximal Point Algorithm with Variance Reduction [2.048226951354646]
弱凸, 複合最適化問題に対する実装可能な近位点(SPP)法を開発した。
提案アルゴリズムは分散低減機構を組み込んでおり、その結果の更新は不正確なセミスムース・ニュートン・フレームワークを用いて解決される。
論文 参考訳(メタデータ) (2022-04-01T13:08:49Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z) - Distributed Stochastic Nonconvex Optimization and Learning based on
Successive Convex Approximation [26.11677569331688]
本稿では,ネットワーク内のエージェントの総和の分散アルゴリズム最小化のための新しいフレームワークを提案する。
提案手法は分散ニューラルネットワークに適用可能であることを示す。
論文 参考訳(メタデータ) (2020-04-30T15:36:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。