論文の概要: SLEB: Streamlining LLMs through Redundancy Verification and Elimination of Transformer Blocks
- arxiv url: http://arxiv.org/abs/2402.09025v4
- Date: Wed, 12 Jun 2024 01:40:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 22:53:54.956724
- Title: SLEB: Streamlining LLMs through Redundancy Verification and Elimination of Transformer Blocks
- Title(参考訳): SLEB: 冗長性検証によるLLMのストリーム化と変圧器ブロックの除去
- Authors: Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, Jae-Joon Kim,
- Abstract要約: 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて非常に効果的であることが証明されている。
既存の手法はしばしば、実質的なエンドツーエンドのLLM推論スピードアップを達成するのに苦労する。
SLEBは、冗長なトランスフォーマーブロックを排除し、LCMを合理化するための新しいアプローチである。
- 参考スコア(独自算出の注目度): 9.958467179573237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have proven to be highly effective across various natural language processing tasks. However, their large number of parameters poses significant challenges for practical deployment. Pruning, a technique aimed at reducing the size and complexity of LLMs, offers a potential solution by removing redundant components from the network. Despite the promise of pruning, existing methods often struggle to achieve substantial end-to-end LLM inference speedup. In this paper, we introduce SLEB, a novel approach designed to streamline LLMs by eliminating redundant transformer blocks. We choose the transformer block as the fundamental unit for pruning, because LLMs exhibit block-level redundancy with high similarity between the outputs of neighboring blocks. This choice allows us to effectively enhance the processing speed of LLMs. Our experimental results demonstrate that SLEB outperforms previous LLM pruning methods in accelerating LLM inference while also maintaining superior perplexity and accuracy, making SLEB as a promising technique for enhancing the efficiency of LLMs. The code is available at: https://github.com/jiwonsong-dev/SLEB.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて非常に効果的であることが証明されている。
しかし、それらの多数のパラメータは、実践的なデプロイに重大な課題を生じさせる。
LLMのサイズと複雑さを減らすことを目的とした技術であるPruningは、ネットワークから冗長なコンポーネントを取り除くことで潜在的なソリューションを提供する。
プルーニングの約束にもかかわらず、既存の手法は、かなりエンドツーエンドのLSM推論スピードアップを達成するのに苦労することが多い。
本稿では、冗長なトランスブロックを排除し、LCMを合理化するための新しいアプローチであるSLEBを紹介する。
LLMは隣接するブロックの出力間に高い類似性を有するブロックレベルの冗長性を示すため、我々は変圧器ブロックをプルーニングの基本単位として選択する。
この選択により、LLMの処理速度を効果的に向上できる。
実験結果から,SLEBはLLM推論を高速化し,高いパープレキシティと精度を維持しつつ,従来のLLMプルーニング法よりも優れており,SLEBはLLMの効率を高めるための有望な技術であることが示された。
コードは、https://github.com/jiwonsong-dev/SLEB.comで入手できる。
関連論文リスト
- SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
投機的復号法(SD)は,大規模言語モデル(LLM)の推論を高速化するパラダイムとして広く用いられている。
本稿では,LLMの中間層を適応的に選択して推論時にスキップする,オンザフライの自己投機的復号アルゴリズムであるSWIFTを紹介する。
SWIFTは生成したテキストの元の分布を保ちながら1.3x-1.6xの高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-09T14:15:30Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
自己回帰型大規模言語モデル(LLaMa, GPT)は、言語理解と生成において顕著な成功を収めている。
発生時に発生する過負荷を軽減するため、いくつかの早期退避および層下降戦略が提案されている。
本稿では,入力適応型フィードフォワードスキップ戦略であるFFN-SkipLLMを提案する。
論文 参考訳(メタデータ) (2024-04-05T02:35:43Z) - ShortGPT: Layers in Large Language Models are More Redundant Than You Expect [38.148626520751385]
LLM(Large Language Models)の多くの層は高い類似性を示し、いくつかの層はネットワーク機能において無視できる役割を担っている。
レイヤ除去という,冗長なレイヤを直接削除する,簡単なプルーニング手法を提案する。
実験により,我々はShortGPT(ショートGPT)と呼ぶ手法を,モデルプルーニングにおける従来のSOTA(State-of-the-art)手法よりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2024-03-06T17:04:18Z) - Looking Right is Sometimes Right: Investigating the Capabilities of Decoder-only LLMs for Sequence Labeling [0.0]
最近のデコーダのみの大規模言語モデル(LLM)は、より小さなステートベースのエンコーダと同等に動作する。
因果マスクを階層的に除去することで,IEタスク上でのオープンLLMのSL性能を向上させる手法について検討する。
その結果,層依存性CM除去によるオープンLCMは,強いエンコーダや命令調整LDMよりも優れていた。
論文 参考訳(メタデータ) (2024-01-25T22:50:48Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
本稿では,集中型LCMと下流エミュレータ間でトランスフォーマブロックを転送する代表的手法であるOffsite-Tuning(OFT)に焦点を当てる。
これらの観測にインスパイアされたCRaShは、LCMから改善エミュレータを導出するトレーニングフリー戦略であるClustering、Removing、Sharingを含む。
以上の結果から,CRaShとOFTの有効性が明らかとなった。
論文 参考訳(メタデータ) (2023-10-24T03:08:58Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。