論文の概要: Blind Deep-Learning-Based Image Watermarking Robust Against Geometric
Transformations
- arxiv url: http://arxiv.org/abs/2402.09062v1
- Date: Wed, 14 Feb 2024 10:18:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 16:07:55.810085
- Title: Blind Deep-Learning-Based Image Watermarking Robust Against Geometric
Transformations
- Title(参考訳): ブラインド深層学習に基づく幾何変換に対する画像透かしロバスト
- Authors: Hannes Mareen, Lucas Antchougov, Glenn Van Wallendael, Peter Lambert
- Abstract要約: 提案手法は,透かし符号化と復号化にディープラーニングを用いた既存のHiDDeNアーキテクチャに基づいている。
私たちは、このアーキテクチャに新しいノイズ層、すなわち、微分可能なJPEG推定、回転、再スケーリング、翻訳、せん断、ミラーリングを追加します。
提案手法は,消費者の端末で見た画像の保護に利用することができる。
- 参考スコア(独自算出の注目度): 6.948186032020995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital watermarking enables protection against copyright infringement of
images. Although existing methods embed watermarks imperceptibly and
demonstrate robustness against attacks, they typically lack resilience against
geometric transformations. Therefore, this paper proposes a new watermarking
method that is robust against geometric attacks. The proposed method is based
on the existing HiDDeN architecture that uses deep learning for watermark
encoding and decoding. We add new noise layers to this architecture, namely for
a differentiable JPEG estimation, rotation, rescaling, translation, shearing
and mirroring. We demonstrate that our method outperforms the state of the art
when it comes to geometric robustness. In conclusion, the proposed method can
be used to protect images when viewed on consumers' devices.
- Abstract(参考訳): デジタル透かしは、画像の著作権侵害に対する保護を可能にする。
既存の手法では透かしを埋め込んで攻撃に対する堅牢性を示すが、通常は幾何学的変換に対する弾力性に欠ける。
そこで本研究では,幾何学的攻撃に対して堅牢な新しい透かし手法を提案する。
提案手法は,透かし符号化と復号化にディープラーニングを用いた既存のHiDDeNアーキテクチャに基づいている。
私たちは、このアーキテクチャに新しいノイズ層、すなわち、微分可能なJPEG推定、回転、再スケーリング、翻訳、せん断、ミラーリングを追加します。
幾何学的ロバスト性に関しては,本手法が最先端技術であることを示す。
結論として,提案手法は,消費者のデバイスで見た画像の保護に使用できる。
関連論文リスト
- Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking [6.246098300155482]
本稿では,メディア認証のために,見えない秘密メッセージを実画像に埋め込む半フレジブルな画像透かし手法を提案する。
提案するフレームワークは,顔の操作や改ざんに対して脆弱であると同時に,画像処理操作や透かし除去攻撃に対して頑健であるように設計されている。
論文 参考訳(メタデータ) (2024-10-02T18:05:03Z) - Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
画像と透かし(T2IW)への共同テキスト生成のための新しいタスクを提案する。
このT2IWスキームは、意味的特徴と透かし信号が画素内で互換性を持つように強制することにより、複合画像を生成する際に、画像品質に最小限のダメージを与える。
提案手法により,画像品質,透かしの可視性,透かしの堅牢性などの顕著な成果が得られた。
論文 参考訳(メタデータ) (2023-09-07T16:12:06Z) - ReMark: Receptive Field based Spatial WaterMark Embedding Optimization
using Deep Network [23.357707056321534]
難解な透かしを埋め込むための新しいディープラーニングアーキテクチャについて検討する。
提案手法は, 衝突歪みを含む透かしの一般的な歪みに対して頑健である。
論文 参考訳(メタデータ) (2023-05-11T13:21:29Z) - Adaptive Blind Watermarking Using Psychovisual Image Features [8.75217589103206]
本稿では,カバー画像の異なる部分に埋め込まれた透かしの強度を適応的に決定する手法を提案する。
また, 提案手法は, 異なる種類の共通透かし攻撃において, 組込みペイロードを効果的に再構築できることを示す。
論文 参考訳(メタデータ) (2022-12-25T06:33:36Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
本稿では,ディープラーニングモデルのための認証型透かし手法を提案する。
我々の透かしは、モデルパラメータが特定のl2しきい値以上変更されない限り、取り外し不可能であることが保証されている。
私たちの透かしは、従来の透かし法に比べて経験的に頑丈です。
論文 参考訳(メタデータ) (2022-07-16T16:06:59Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
我々は,自己教師型アプローチに照らして,事前学習した深層ネットワークに基づく透かし手法を再検討する。
我々は、マーク時間におけるデータの増大を利用して、マークとバイナリのメッセージをその潜在空間に埋め込む方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T15:52:46Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
Deep Neural Network(DNN)の知的財産権(IP)は、代理モデルアタックによって簡単に盗まれる。
本稿では,新しい構造整合モデルウォーターマーキングアルゴリズムを設計した新しい透かし手法,すなわち構造整合性'を提案する。
論文 参考訳(メタデータ) (2021-08-05T04:27:15Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。