Stochastic Spiking Attention: Accelerating Attention with Stochastic
Computing in Spiking Networks
- URL: http://arxiv.org/abs/2402.09109v1
- Date: Wed, 14 Feb 2024 11:47:19 GMT
- Title: Stochastic Spiking Attention: Accelerating Attention with Stochastic
Computing in Spiking Networks
- Authors: Zihang Song, Prabodh Katti, Osvaldo Simeone, Bipin Rajendran
- Abstract summary: Spiking Neural Networks (SNNs) have been recently integrated into Transformer architectures due to their potential to reduce computational demands and to improve power efficiency.
We propose a novel framework leveraging computing (SC) to effectively execute the dot-product attention for SNN-based Transformers.
- Score: 33.51445486269896
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spiking Neural Networks (SNNs) have been recently integrated into Transformer
architectures due to their potential to reduce computational demands and to
improve power efficiency. Yet, the implementation of the attention mechanism
using spiking signals on general-purpose computing platforms remains
inefficient. In this paper, we propose a novel framework leveraging stochastic
computing (SC) to effectively execute the dot-product attention for SNN-based
Transformers. We demonstrate that our approach can achieve high classification
accuracy ($83.53\%$) on CIFAR-10 within 10 time steps, which is comparable to
the performance of a baseline artificial neural network implementation
($83.66\%$). We estimate that the proposed SC approach can lead to over
$6.3\times$ reduction in computing energy and $1.7\times$ reduction in memory
access costs for a digital CMOS-based ASIC design. We experimentally validate
our stochastic attention block design through an FPGA implementation, which is
shown to achieve $48\times$ lower latency as compared to a GPU implementation,
while consuming $15\times$ less power.
Related papers
- Hardware-Software Co-optimised Fast and Accurate Deep Reconfigurable Spiking Inference Accelerator Architecture Design Methodology [2.968768532937366]
Spiking Neural Networks (SNNs) have emerged as a promising approach to improve the energy efficiency of machine learning models.
We develop a hardware-software co-optimisation strategy to port software-trained deep neural networks (DNN) to reduced-precision spiking models.
arXiv Detail & Related papers (2024-10-07T05:04:13Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNet is a framework to bridge the theoretical and practical efficiency gap in dynamic networks.
It integrates three primary dynamic paradigms-spatially adaptive computation, dynamic layer skipping, and dynamic channel skipping.
It can notably reduce the latency of models like ResNet by over 50% on platforms such as V100,3090, and TX2 GPUs.
arXiv Detail & Related papers (2023-08-30T10:57:41Z) - Accurate, Low-latency, Efficient SAR Automatic Target Recognition on
FPGA [3.251765107970636]
Synthetic aperture radar (SAR) automatic target recognition (ATR) is the key technique for remote-sensing image recognition.
The state-of-the-art convolutional neural networks (CNNs) for SAR ATR suffer from emphhigh computation cost and emphlarge memory footprint.
We propose a comprehensive GNN-based model-architecture co-design on FPGA to address the above issues.
arXiv Detail & Related papers (2023-01-04T05:35:30Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Matching Pursuit Based Scheduling for Over-the-Air Federated Learning [67.59503935237676]
This paper develops a class of low-complexity device scheduling algorithms for over-the-air learning via the method of federated learning.
Compared to the state-of-the-art proposed scheme, the proposed scheme poses a drastically lower efficiency system.
The efficiency of the proposed scheme is confirmed via experiments on the CIFAR dataset.
arXiv Detail & Related papers (2022-06-14T08:14:14Z) - Single-Shot Optical Neural Network [55.41644538483948]
'Weight-stationary' analog optical and electronic hardware has been proposed to reduce the compute resources required by deep neural networks.
We present a scalable, single-shot-per-layer weight-stationary optical processor.
arXiv Detail & Related papers (2022-05-18T17:49:49Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - NullaNet Tiny: Ultra-low-latency DNN Inference Through Fixed-function
Combinational Logic [4.119948826527649]
Field-programmable gate array (FPGA)-based accelerators are gaining traction as a serious contender to replace graphics processing unit/central processing unit-based platforms.
This paper presents NullaNet Tiny, a framework for constructing resource and energy-efficient, ultra-low-latency FPGA-based neural network accelerators.
arXiv Detail & Related papers (2021-04-07T00:16:39Z) - Fully-parallel Convolutional Neural Network Hardware [0.7829352305480285]
We propose a new power-and-area-efficient architecture for implementing Articial Neural Networks (ANNs) in hardware.
For the first time, a fully-parallel CNN as LENET-5 is embedded and tested in a single FPGA.
arXiv Detail & Related papers (2020-06-22T17:19:09Z) - ESSOP: Efficient and Scalable Stochastic Outer Product Architecture for
Deep Learning [1.2019888796331233]
Matrix-vector multiplications (MVM) and vector-vector outer product (VVOP) are the two most expensive operations associated with the training of deep neural networks (DNNs)
We introduce efficient techniques to SC for weight update in DNNs with the activation functions required by many state-of-the-art networks.
Our architecture reduces the computational cost by re-using random numbers and replacing certain FP multiplication operations by bit shift scaling.
Hardware design of ESSOP at 14nm technology node shows that, compared to a highly pipelined FP16 multiplier, ESSOP is 82.2% and 93.7% better in energy
arXiv Detail & Related papers (2020-03-25T07:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.