論文の概要: Instruction Backdoor Attacks Against Customized LLMs
- arxiv url: http://arxiv.org/abs/2402.09179v3
- Date: Tue, 28 May 2024 11:36:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 01:28:38.407444
- Title: Instruction Backdoor Attacks Against Customized LLMs
- Title(参考訳): カスタムLDMに対するバックドアアタックの指導
- Authors: Rui Zhang, Hongwei Li, Rui Wen, Wenbo Jiang, Yuan Zhang, Michael Backes, Yun Shen, Yang Zhang,
- Abstract要約: 我々は、信頼できないカスタマイズ LLM と統合されたアプリケーションに対して、最初の命令バックドアアタックを提案する。
私たちの攻撃には、単語レベル、構文レベル、意味レベルという3つのレベルの攻撃が含まれています。
本稿では,2つの防衛戦略を提案し,その効果を実証する。
- 参考スコア(独自算出の注目度): 37.92008159382539
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing demand for customized Large Language Models (LLMs) has led to the development of solutions like GPTs. These solutions facilitate tailored LLM creation via natural language prompts without coding. However, the trustworthiness of third-party custom versions of LLMs remains an essential concern. In this paper, we propose the first instruction backdoor attacks against applications integrated with untrusted customized LLMs (e.g., GPTs). Specifically, these attacks embed the backdoor into the custom version of LLMs by designing prompts with backdoor instructions, outputting the attacker's desired result when inputs contain the pre-defined triggers. Our attack includes 3 levels of attacks: word-level, syntax-level, and semantic-level, which adopt different types of triggers with progressive stealthiness. We stress that our attacks do not require fine-tuning or any modification to the backend LLMs, adhering strictly to GPTs development guidelines. We conduct extensive experiments on 6 prominent LLMs and 5 benchmark text classification datasets. The results show that our instruction backdoor attacks achieve the desired attack performance without compromising utility. Additionally, we propose two defense strategies and demonstrate their effectiveness in reducing such attacks. Our findings highlight the vulnerability and the potential risks of LLM customization such as GPTs.
- Abstract(参考訳): カスタマイズされたLarge Language Models (LLM) に対する需要が増加し、GPTのようなソリューションが開発されるようになった。
これらのソリューションは、コーディングせずに自然言語のプロンプトを介してLLMをカスタマイズするのに役立つ。
しかし、サードパーティのカスタムバージョンのLDMの信頼性は依然として重要な懸念事項である。
本稿では、信頼できないカスタマイズ LLM (e , GPTs) と統合されたアプリケーションに対する最初の命令バックドア攻撃を提案する。
具体的には、これらの攻撃は、バックドア命令でプロンプトを設計し、事前に定義されたトリガを含む場合、アタッカーの望ましい結果を出力することで、バックドアをLLMのカスタムバージョンに埋め込む。
私たちの攻撃には、単語レベル、構文レベル、意味レベルという3つのレベルの攻撃が含まれています。
我々は、我々の攻撃は微調整やバックエンドのLCMの変更を必要とせず、GPT開発ガイドラインに厳格に従うことを強調する。
我々は6つの著名なLCMと5つのベンチマークテキスト分類データセットについて広範な実験を行った。
その結果,我々の命令バックドア攻撃は,実用性を損なうことなく,所望の攻撃性能を達成できることが示唆された。
さらに,2つの防衛戦略を提案し,その効果を実証する。
GPTなどのLCMカスタマイズの脆弱性と潜在的なリスクについて検討した。
関連論文リスト
- Denial-of-Service Poisoning Attacks against Large Language Models [64.77355353440691]
LLMはDenial-of-Service(DoS)攻撃に対して脆弱で、スペルエラーや非意味的なプロンプトが[EOS]トークンを生成することなく、無限のアウトプットをトリガーする。
本研究では, LLM に対する毒素を用いた DoS 攻撃について提案し, 1 つの毒素を注入することで, 出力長の限界を破ることができることを示した。
論文 参考訳(メタデータ) (2024-10-14T17:39:31Z) - Aligning LLMs to Be Robust Against Prompt Injection [55.07562650579068]
インジェクション攻撃に対してLCMをより堅牢にするための強力なツールとしてアライメントが有効であることを示す。
私たちのメソッド -- SecAlign -- は、最初に、プロンプトインジェクション攻撃をシミュレートしてアライメントデータセットを構築します。
実験の結果,SecAlign は LLM を大幅に強化し,モデルの実用性に悪影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2024-10-07T19:34:35Z) - MaPPing Your Model: Assessing the Impact of Adversarial Attacks on LLM-based Programming Assistants [14.947665219536708]
本稿では,攻撃者がプログラムタスクのプロンプトに少量のテキストを付加するMalicious Programming Prompt(MaPP)攻撃を紹介する。
我々の迅速な戦略は、LSMが他の方法で正しいコードを書き続けながら脆弱性を追加する可能性があることを示しています。
論文 参考訳(メタデータ) (2024-07-12T22:30:35Z) - Chain-of-Scrutiny: Detecting Backdoor Attacks for Large Language Models [35.77228114378362]
バックドア攻撃は大規模言語モデル(LLM)に重大な脅威をもたらす
これらの課題に対処するための新しいソリューションとして、CoS(Chain-of-Scrutiny)を提案する。
CoS は LLM を誘導して入力の詳細な推論ステップを生成し、最後に答えの整合性を確保するために推論プロセスを精査する。
論文 参考訳(メタデータ) (2024-06-10T00:53:25Z) - TrojanRAG: Retrieval-Augmented Generation Can Be Backdoor Driver in Large Language Models [16.71019302192829]
大規模言語モデル(LLM)は、自然言語処理(NLP)において顕著なパフォーマンスにもかかわらず、潜在的なセキュリティ脅威に対する懸念を提起している。
バックドア攻撃は当初、LLMがあらゆる段階で重大な損害を受けていることを証明したが、コストとロバスト性は批判されている。
本稿では,Retrieval-Augmented Generationにおいて,共同でバックドア攻撃を行うTrojanRAGを提案する。
論文 参考訳(メタデータ) (2024-05-22T07:21:32Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - Goal-Oriented Prompt Attack and Safety Evaluation for LLMs [43.93613764464993]
高品質なプロンプト攻撃サンプルを構築するパイプラインと、CPADと呼ばれる中国のプロンプト攻撃データセットを導入する。
我々のプロンプトは、慎重に設計されたいくつかのプロンプトアタックテンプレートで、予期せぬ出力を生成するためにLSMを誘導することを目的としている。
GPT-3.5に対する攻撃成功率は70%程度であった。
論文 参考訳(メタデータ) (2023-09-21T07:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。