論文の概要: AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting
- arxiv url: http://arxiv.org/abs/2403.09513v1
- Date: Thu, 14 Mar 2024 15:57:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 19:47:59.974331
- Title: AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting
- Title(参考訳): AdaShield:Adaptive Shield Promptingによる構造ベースアタックからのマルチモーダルな大規模言語モデルの保護
- Authors: Yu Wang, Xiaogeng Liu, Yu Li, Muhao Chen, Chaowei Xiao,
- Abstract要約: textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
- 参考スコア(独自算出の注目度): 54.931241667414184
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the advent and widespread deployment of Multimodal Large Language Models (MLLMs), the imperative to ensure their safety has become increasingly pronounced. However, with the integration of additional modalities, MLLMs are exposed to new vulnerabilities, rendering them prone to structured-based jailbreak attacks, where semantic content (e.g., "harmful text") has been injected into the images to mislead MLLMs. In this work, we aim to defend against such threats. Specifically, we propose \textbf{Ada}ptive \textbf{Shield} Prompting (\textbf{AdaShield}), which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks without fine-tuning MLLMs or training additional modules (e.g., post-stage content detector). Initially, we present a manually designed static defense prompt, which thoroughly examines the image and instruction content step by step and specifies response methods to malicious queries. Furthermore, we introduce an adaptive auto-refinement framework, consisting of a target MLLM and a LLM-based defense prompt generator (Defender). These components collaboratively and iteratively communicate to generate a defense prompt. Extensive experiments on the popular structure-based jailbreak attacks and benign datasets show that our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks without compromising the model's general capabilities evaluated on standard benign tasks. Our code is available at https://github.com/rain305f/AdaShield.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)の出現と普及に伴い、安全性の確保がますます顕著になっている。
しかし、追加のモダリティの統合により、MLLMは新たな脆弱性に晒され、構造化されたベースのジェイルブレイク攻撃に陥りやすくなり、セマンティックコンテンツ(例:「有害テキスト」)がイメージに注入されてMLLMを誤解させる。
この作業では、このような脅威に対して防御することを目指しています。
具体的には、MLLMを微調整したり、追加モジュール(例えば、ポストステージコンテンツ検出器)を訓練したりすることなく、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
まず,手動で設計した静的ディフェンスプロンプトを提示し,画像と命令内容のステップごとに徹底的に検証し,悪意のあるクエリに対する応答方法を指定する。
さらに,MLLM と LLM ベースのディフェンスプロンプトジェネレータ (Defender) から構成される適応型自動精細化フレームワークを導入する。
これらのコンポーネントは協調的かつ反復的に通信し、防御プロンプトを生成する。
一般的な構造ベースのジェイルブレイク攻撃と良性データセットに関する広範な実験により、我々の手法は、標準的な良性タスクで評価されたモデルの一般的な能力を損なうことなく、構造ベースのジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善できることを示した。
私たちのコードはhttps://github.com/rain305f/AdaShield.comで入手可能です。
関連論文リスト
- HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
隠れ状態フィルタ(HSF)に基づくジェイルブレイク攻撃防御戦略を提案する。
HSFは、推論プロセスが始まる前に、モデルが相手の入力をプリエンプティブに識別し、拒否することを可能にする。
不正なユーザクエリに対する応答を最小限に抑えながら、Jailbreak攻撃の成功率を大幅に低下させる。
論文 参考訳(メタデータ) (2024-08-31T06:50:07Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
大規模言語モデル(LLM)は、広範囲の現実世界のアプリケーションで採用されつつある。
近年の研究では、LSMは故意に構築された敵のプロンプトに弱いことが示されている。
そこで本研究では,新しい防衛手法である textbfLayer-specific textbfEditing (LED) を提案する。
論文 参考訳(メタデータ) (2024-05-28T13:26:12Z) - Protecting Your LLMs with Information Bottleneck [20.870610473199125]
本稿では,情報ボトルネック原理に基づく防御機構であるIBProtector(Information Bottleneck Protector)を紹介する。
IBProtectorは、軽量で訓練可能な抽出器によって促進されるプロンプトを選択的に圧縮し、摂動する。
IBProtectorはジェイルブレイク対策において,現在の防御方法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-22T08:16:07Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
本稿では,大規模言語モデルに対する新たなジェイルブレイク攻撃であるAutoDANを紹介する。
AutoDANは、慎重に設計された階層型遺伝的アルゴリズムによって、ステルスなジェイルブレイクプロンプトを自動的に生成できる。
論文 参考訳(メタデータ) (2023-10-03T19:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。