Better-than-KL PAC-Bayes Bounds
- URL: http://arxiv.org/abs/2402.09201v2
- Date: Thu, 4 Apr 2024 11:22:20 GMT
- Title: Better-than-KL PAC-Bayes Bounds
- Authors: Ilja Kuzborskij, Kwang-Sung Jun, Yulian Wu, Kyoungseok Jang, Francesco Orabona,
- Abstract summary: We show that it is possible to achieve a strictly tighter bound with a novel and better-than-KL divergence.
Our result is first-of-its-kind in that existing PAC-Bayes bounds with non-KL divergences are not known to be strictly better than KL.
- Score: 23.87003743389573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Let $f(\theta, X_1),$ $ \dots,$ $ f(\theta, X_n)$ be a sequence of random elements, where $f$ is a fixed scalar function, $X_1, \dots, X_n$ are independent random variables (data), and $\theta$ is a random parameter distributed according to some data-dependent posterior distribution $P_n$. In this paper, we consider the problem of proving concentration inequalities to estimate the mean of the sequence. An example of such a problem is the estimation of the generalization error of some predictor trained by a stochastic algorithm, such as a neural network where $f$ is a loss function. Classically, this problem is approached through a PAC-Bayes analysis where, in addition to the posterior, we choose a prior distribution which captures our belief about the inductive bias of the learning problem. Then, the key quantity in PAC-Bayes concentration bounds is a divergence that captures the complexity of the learning problem where the de facto standard choice is the KL divergence. However, the tightness of this choice has rarely been questioned. In this paper, we challenge the tightness of the KL-divergence-based bounds by showing that it is possible to achieve a strictly tighter bound. In particular, we demonstrate new high-probability PAC-Bayes bounds with a novel and better-than-KL divergence that is inspired by Zhang et al. (2022). Our proof is inspired by recent advances in regret analysis of gambling algorithms, and its use to derive concentration inequalities. Our result is first-of-its-kind in that existing PAC-Bayes bounds with non-KL divergences are not known to be strictly better than KL. Thus, we believe our work marks the first step towards identifying optimal rates of PAC-Bayes bounds.
Related papers
- Fast Rates for Bandit PAC Multiclass Classification [73.17969992976501]
We study multiclass PAC learning with bandit feedback, where inputs are classified into one of $K$ possible labels and feedback is limited to whether or not the predicted labels are correct.
Our main contribution is in designing a novel learning algorithm for the agnostic $(varepsilon,delta)$PAC version of the problem.
arXiv Detail & Related papers (2024-06-18T08:54:04Z) - PAC-Bayes-Chernoff bounds for unbounded losses [9.987130158432755]
We introduce a new PAC-Bayes oracle bound for unbounded losses that extends Cram'er-Chernoff bounds to the PAC-Bayesian setting.
Our approach naturally leverages properties of Cram'er-Chernoff bounds, such as exact optimization of the free parameter in many PAC-Bayes bounds.
arXiv Detail & Related papers (2024-01-02T10:58:54Z) - Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
This paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM)
We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$.
Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $tilde O(d)$ regret.
arXiv Detail & Related papers (2023-10-02T08:15:52Z) - Tighter PAC-Bayes Bounds Through Coin-Betting [31.148069991567215]
We show how to refine the proof strategy of the PAC-Bayes bounds and achieve empheven tighter guarantees.
We derive the first PAC-Bayes concentration inequality based on the coin-betting approach that holds simultaneously for all sample sizes.
arXiv Detail & Related papers (2023-02-12T01:16:27Z) - New Lower Bounds for Private Estimation and a Generalized Fingerprinting
Lemma [10.176795938619417]
We prove new lower bounds for statistical estimation tasks under the constraint of $(varepsilon, delta)$-differential privacy.
We show that estimating the Frobenius norm requires $Omega(d2)$ samples, and in spectral norm requires $Omega(d3/2)$ samples, both matching upper bounds up to logarithmic factors.
arXiv Detail & Related papers (2022-05-17T17:55:10Z) - High Probability Bounds for a Class of Nonconvex Algorithms with AdaGrad
Stepsize [55.0090961425708]
We propose a new, simplified high probability analysis of AdaGrad for smooth, non- probability problems.
We present our analysis in a modular way and obtain a complementary $mathcal O (1 / TT)$ convergence rate in the deterministic setting.
To the best of our knowledge, this is the first high probability for AdaGrad with a truly adaptive scheme, i.e., completely oblivious to the knowledge of smoothness.
arXiv Detail & Related papers (2022-04-06T13:50:33Z) - Bayesian decision-making under misspecified priors with applications to
meta-learning [64.38020203019013]
Thompson sampling and other sequential decision-making algorithms are popular approaches to tackle explore/exploit trade-offs in contextual bandits.
We show that performance degrades gracefully with misspecified priors.
arXiv Detail & Related papers (2021-07-03T23:17:26Z) - Problem Dependent View on Structured Thresholding Bandit Problems [73.70176003598449]
We investigate the problem dependent regime in the Thresholding Bandit problem (TBP)
The objective of the learner is to output, at the end of a sequential game, the set of arms whose means are above a given threshold.
We provide upper and lower bounds for the probability of error in both the concave and monotone settings.
arXiv Detail & Related papers (2021-06-18T15:01:01Z) - Probabilistic Sequential Shrinking: A Best Arm Identification Algorithm
for Stochastic Bandits with Corruptions [91.8283876874947]
We consider a best arm identification (BAI) problem for Sequential bandits with adversarial corruptions in the fixed-budget setting of T steps.
We design a novel randomized algorithm, Probabilistic Shrinking($u$) (PSS($u$)), which is agnostic to the amount of corruptions.
We show that when the CPS is sufficiently large, no algorithm can achieve a BAI probability tending to $1$ as $Trightarrow infty$.
arXiv Detail & Related papers (2020-10-15T17:34:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.