Agnostic Learning under Targeted Poisoning: Optimal Rates and the Role of Randomness
- URL: http://arxiv.org/abs/2506.03075v1
- Date: Tue, 03 Jun 2025 16:53:20 GMT
- Title: Agnostic Learning under Targeted Poisoning: Optimal Rates and the Role of Randomness
- Authors: Bogdan Chornomaz, Yonatan Koren, Shay Moran, Tom Waknine,
- Abstract summary: Prior work established that the optimal error under such instance-targeted poisoning attacks scales as $Theta(deta)$.<n>We show that the optimal excess error is $tildeTheta(sqrtdeta)$, answering one of the main open problems left by Hanneke et al.
- Score: 13.802167452101909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of learning in the presence of an adversary that can corrupt an $\eta$ fraction of the training examples with the goal of causing failure on a specific test point. In the realizable setting, prior work established that the optimal error under such instance-targeted poisoning attacks scales as $\Theta(d\eta)$, where $d$ is the VC dimension of the hypothesis class arXiv:2210.02713. In this work, we resolve the corresponding question in the agnostic setting. We show that the optimal excess error is $\tilde{\Theta}(\sqrt{d\eta})$, answering one of the main open problems left by Hanneke et al. To achieve this rate, it is necessary to use randomized learners: Hanneke et al. showed that deterministic learners can be forced to suffer error close to 1, even under small amounts of poisoning. Perhaps surprisingly, our upper bound remains valid even when the learner's random bits are fully visible to the adversary . In the other direction, our lower bound is stronger than standard PAC-style bounds: instead of tailoring a hard distribution separately for each sample size, we exhibit a single fixed distribution under which the adversary can enforce an excess error of $\Omega(\sqrt{d\eta})$ infinitely often.
Related papers
- Fast Rates for Bandit PAC Multiclass Classification [73.17969992976501]
We study multiclass PAC learning with bandit feedback, where inputs are classified into one of $K$ possible labels and feedback is limited to whether or not the predicted labels are correct.
Our main contribution is in designing a novel learning algorithm for the agnostic $(varepsilon,delta)$PAC version of the problem.
arXiv Detail & Related papers (2024-06-18T08:54:04Z) - Optimal Multiclass U-Calibration Error and Beyond [31.959887895880765]
We consider the problem of online multiclass bounds U-calibration, where a forecaster aims to make sequential distributional predictions over $K$ classes with low U-calibration error.
We show that the optimal U-calibration error is $Theta(sqrtKT)$.
arXiv Detail & Related papers (2024-05-28T20:33:18Z) - Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback [58.66941279460248]
Learning from human feedback plays an important role in aligning generative models, such as large language models (LLM)<n>We study a model within this domain--contextual dueling bandits with adversarial feedback, where the true preference label can be flipped by an adversary.<n>We propose an algorithm namely robust contextual dueling bandits (RCDB), which is based on uncertainty-weighted maximum likelihood estimation.
arXiv Detail & Related papers (2024-04-16T17:59:55Z) - Better-than-KL PAC-Bayes Bounds [23.87003743389573]
We show that it is possible to achieve a strictly tighter bound with a novel and better-than-KL divergence.
Our result is first-of-its-kind in that existing PAC-Bayes bounds with non-KL divergences are not known to be strictly better than KL.
arXiv Detail & Related papers (2024-02-14T14:33:39Z) - Bandit-Feedback Online Multiclass Classification: Variants and Tradeoffs [32.29254118429081]
We show that the optimal mistake bound under bandit feedback is at most $O(k)$ times higher than the optimal mistake bound in the full information case.
We also present nearly optimal bounds of $tildeTheta(k)$ on the gap between randomized and deterministic learners.
arXiv Detail & Related papers (2024-02-12T07:20:05Z) - Optimal Prediction Using Expert Advice and Randomized Littlestone
Dimension [32.29254118429081]
A classical result characterizes the optimal mistake bound achievable by deterministic learners using the Littlestone dimension.
We show that the optimal expected mistake bound in learning a class $mathcalH$ equals its randomized Littlestone dimension.
arXiv Detail & Related papers (2023-02-27T14:50:34Z) - Estimating Optimal Policy Value in General Linear Contextual Bandits [50.008542459050155]
In many bandit problems, the maximal reward achievable by a policy is often unknown in advance.
We consider the problem of estimating the optimal policy value in the sublinear data regime before the optimal policy is even learnable.
We present a more practical, computationally efficient algorithm that estimates a problem-dependent upper bound on $V*$.
arXiv Detail & Related papers (2023-02-19T01:09:24Z) - Problem Dependent View on Structured Thresholding Bandit Problems [73.70176003598449]
We investigate the problem dependent regime in the Thresholding Bandit problem (TBP)
The objective of the learner is to output, at the end of a sequential game, the set of arms whose means are above a given threshold.
We provide upper and lower bounds for the probability of error in both the concave and monotone settings.
arXiv Detail & Related papers (2021-06-18T15:01:01Z) - Locality defeats the curse of dimensionality in convolutional
teacher-student scenarios [69.2027612631023]
We show that locality is key in determining the learning curve exponent $beta$.
We conclude by proving, using a natural assumption, that performing kernel regression with a ridge that decreases with the size of the training set leads to similar learning curve exponents to those we obtain in the ridgeless case.
arXiv Detail & Related papers (2021-06-16T08:27:31Z) - Robust learning under clean-label attack [26.323812778809913]
We study the problem of robust learning under clean-label data-poisoning attacks.
The learning goal is to minimize the attackable rate, which is more difficult than optimal PAC learning.
arXiv Detail & Related papers (2021-03-01T00:21:15Z) - Probabilistic Sequential Shrinking: A Best Arm Identification Algorithm
for Stochastic Bandits with Corruptions [91.8283876874947]
We consider a best arm identification (BAI) problem for Sequential bandits with adversarial corruptions in the fixed-budget setting of T steps.
We design a novel randomized algorithm, Probabilistic Shrinking($u$) (PSS($u$)), which is agnostic to the amount of corruptions.
We show that when the CPS is sufficiently large, no algorithm can achieve a BAI probability tending to $1$ as $Trightarrow infty$.
arXiv Detail & Related papers (2020-10-15T17:34:26Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.