Sample complexity of Schrödinger potential estimation
- URL: http://arxiv.org/abs/2506.03043v1
- Date: Tue, 03 Jun 2025 16:26:03 GMT
- Title: Sample complexity of Schrödinger potential estimation
- Authors: Nikita Puchkin, Iurii Pustovalov, Yuri Sapronov, Denis Suchkov, Alexey Naumov, Denis Belomestny,
- Abstract summary: We study ability generalization of an empirical Kullback-Leibler (KL) risk minimizer over a class of admissible log-potentials.<n>We show that the excess KL-risk may decrease as fast as $O(log2 n / n)$ when the sample size $n$ tends to infinity.
- Score: 6.385485865934912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of Schr\"odinger potential estimation, which plays a crucial role in modern generative modelling approaches based on Schr\"odinger bridges and stochastic optimal control for SDEs. Given a simple prior diffusion process, these methods search for a path between two given distributions $\rho_0$ and $\rho_T^*$ requiring minimal efforts. The optimal drift in this case can be expressed through a Schr\"odinger potential. In the present paper, we study generalization ability of an empirical Kullback-Leibler (KL) risk minimizer over a class of admissible log-potentials aimed at fitting the marginal distribution at time $T$. Under reasonable assumptions on the target distribution $\rho_T^*$ and the prior process, we derive a non-asymptotic high-probability upper bound on the KL-divergence between $\rho_T^*$ and the terminal density corresponding to the estimated log-potential. In particular, we show that the excess KL-risk may decrease as fast as $O(\log^2 n / n)$ when the sample size $n$ tends to infinity even if both $\rho_0$ and $\rho_T^*$ have unbounded supports.
Related papers
- Near-Optimal Clustering in Mixture of Markov Chains [74.3828414695655]
We study the problem of clustering $T$ trajectories of length $H$, each generated by one of $K$ unknown ergodic Markov chains over a finite state space of size $S$.<n>We derive an instance-dependent, high-probability lower bound on the clustering error rate, governed by the weighted KL divergence between the transition kernels of the chains.<n>We then present a novel two-stage clustering algorithm.
arXiv Detail & Related papers (2025-06-02T05:10:40Z) - Theoretical guarantees in KL for Diffusion Flow Matching [9.618473763561418]
Flow Matching (FM) aims to bridge in finite time the target distribution $nustar$ with an auxiliary distribution $mu$.
We obtain non-asymptotics guarantees for Diffusion Flow Matching (DFM) models using as bridge the conditional distribution associated with the Brownian motion.
arXiv Detail & Related papers (2024-09-12T15:19:00Z) - Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models [45.60426164657739]
We develop non-asymptotic convergence theory for a diffusion-based sampler.
We prove that $d/varepsilon$ are sufficient to approximate the target distribution to within $varepsilon$ total-variation distance.
Our results also characterize how $ell$ score estimation errors affect the quality of the data generation processes.
arXiv Detail & Related papers (2024-08-05T09:02:24Z) - Convergence Analysis of Probability Flow ODE for Score-based Generative Models [5.939858158928473]
We study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives.<n>We prove the total variation between the target and the generated data distributions can be bounded above by $mathcalO(d3/4delta1/2)$ in the continuous time level.
arXiv Detail & Related papers (2024-04-15T12:29:28Z) - Soft-constrained Schrodinger Bridge: a Stochastic Control Approach [4.922305511803267]
Schr"odinger bridge can be viewed as a continuous-time control problem where the goal is to find an optimally controlled diffusion process.
We propose to generalize this problem by allowing the terminal distribution to differ from the target but penalizing the Kullback-Leibler divergence between the two distributions.
One application is the development of robust generative diffusion models.
arXiv Detail & Related papers (2024-03-04T04:10:24Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Robust computation of optimal transport by $\beta$-potential
regularization [79.24513412588745]
Optimal transport (OT) has become a widely used tool in the machine learning field to measure the discrepancy between probability distributions.
We propose regularizing OT with the beta-potential term associated with the so-called $beta$-divergence.
We experimentally demonstrate that the transport matrix computed with our algorithm helps estimate a probability distribution robustly even in the presence of outliers.
arXiv Detail & Related papers (2022-12-26T18:37:28Z) - High Probability Bounds for a Class of Nonconvex Algorithms with AdaGrad
Stepsize [55.0090961425708]
We propose a new, simplified high probability analysis of AdaGrad for smooth, non- probability problems.
We present our analysis in a modular way and obtain a complementary $mathcal O (1 / TT)$ convergence rate in the deterministic setting.
To the best of our knowledge, this is the first high probability for AdaGrad with a truly adaptive scheme, i.e., completely oblivious to the knowledge of smoothness.
arXiv Detail & Related papers (2022-04-06T13:50:33Z) - Limit Distribution Theory for the Smooth 1-Wasserstein Distance with
Applications [18.618590805279187]
smooth 1-Wasserstein distance (SWD) $W_1sigma$ was recently proposed as a means to mitigate the curse of dimensionality in empirical approximation.
This work conducts a thorough statistical study of the SWD, including a high-dimensional limit distribution result.
arXiv Detail & Related papers (2021-07-28T17:02:24Z) - Wasserstein distance estimates for the distributions of numerical
approximations to ergodic stochastic differential equations [0.3553493344868413]
We study the Wasserstein distance between the in distribution of an ergodic differential equation and the distribution in the strongly log-concave case.
This allows us to study in a unified way a number of different approximations proposed in the literature for the overdamped and underdamped Langevin dynamics.
arXiv Detail & Related papers (2021-04-26T07:50:04Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.